Merge pull request #260 from topoteretes/COG-505-data-dataset-model-changes

Cog 505 data dataset model changes
This commit is contained in:
Igor Ilic 2024-12-06 14:42:35 +01:00 committed by GitHub
commit 8415279cb2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 344 additions and 34 deletions

View file

@ -0,0 +1,69 @@
name: test | deduplication
on:
workflow_dispatch:
pull_request:
branches:
- main
types: [labeled, synchronize]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
RUNTIME__LOG_LEVEL: ERROR
jobs:
get_docs_changes:
name: docs changes
uses: ./.github/workflows/get_docs_changes.yml
run_deduplication_test:
name: test
needs: get_docs_changes
if: needs.get_docs_changes.outputs.changes_outside_docs == 'true' && ${{ github.event.label.name == 'run-checks' }}
runs-on: ubuntu-latest
defaults:
run:
shell: bash
services:
postgres:
image: pgvector/pgvector:pg17
env:
POSTGRES_USER: cognee
POSTGRES_PASSWORD: cognee
POSTGRES_DB: cognee_db
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
- 5432:5432
steps:
- name: Check out
uses: actions/checkout@master
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.11.x'
- name: Install Poetry
uses: snok/install-poetry@v1.3.2
with:
virtualenvs-create: true
virtualenvs-in-project: true
installer-parallel: true
- name: Install dependencies
run: poetry install -E postgres --no-interaction
- name: Run deduplication test
env:
ENV: 'dev'
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: poetry run python ./cognee/tests/test_deduplication.py

View file

@ -33,11 +33,11 @@ async def add(data: Union[BinaryIO, List[BinaryIO], str, List[str]], dataset_nam
# data is text
else:
file_path = save_data_to_file(data, dataset_name)
file_path = save_data_to_file(data)
return await add([file_path], dataset_name)
if hasattr(data, "file"):
file_path = save_data_to_file(data.file, dataset_name, filename = data.filename)
file_path = save_data_to_file(data.file, filename = data.filename)
return await add([file_path], dataset_name)
# data is a list of file paths or texts
@ -45,13 +45,13 @@ async def add(data: Union[BinaryIO, List[BinaryIO], str, List[str]], dataset_nam
for data_item in data:
if hasattr(data_item, "file"):
file_paths.append(save_data_to_file(data_item, dataset_name, filename = data_item.filename))
file_paths.append(save_data_to_file(data_item, filename = data_item.filename))
elif isinstance(data_item, str) and (
data_item.startswith("/") or data_item.startswith("file://")
):
file_paths.append(data_item)
elif isinstance(data_item, str):
file_paths.append(save_data_to_file(data_item, dataset_name))
file_paths.append(save_data_to_file(data_item))
if len(file_paths) > 0:
return await add_files(file_paths, dataset_name, user)

View file

@ -1,5 +1,7 @@
from typing import BinaryIO, TypedDict
import hashlib
from .guess_file_type import guess_file_type
from cognee.shared.utils import get_file_content_hash
class FileMetadata(TypedDict):
@ -7,10 +9,14 @@ class FileMetadata(TypedDict):
file_path: str
mime_type: str
extension: str
content_hash: str
def get_file_metadata(file: BinaryIO) -> FileMetadata:
"""Get metadata from a file"""
file.seek(0)
content_hash = get_file_content_hash(file)
file.seek(0)
file_type = guess_file_type(file)
file_path = file.name
@ -21,4 +27,5 @@ def get_file_metadata(file: BinaryIO) -> FileMetadata:
file_path = file_path,
mime_type = file_type.mime,
extension = file_type.extension,
content_hash = content_hash,
)

View file

@ -1,7 +1,6 @@
from datetime import datetime, timezone
from typing import List
from uuid import uuid4
from sqlalchemy import UUID, Column, DateTime, String
from sqlalchemy.orm import Mapped, relationship
@ -19,6 +18,8 @@ class Data(Base):
extension = Column(String)
mime_type = Column(String)
raw_data_location = Column(String)
owner_id = Column(UUID, index=True)
content_hash = Column(String)
created_at = Column(
DateTime(timezone=True), default=lambda: datetime.now(timezone.utc)
)

View file

@ -2,7 +2,6 @@ import inspect
import json
import re
import warnings
from typing import Any
from uuid import UUID
from sqlalchemy import select
from typing import Any, BinaryIO, Union

View file

@ -17,7 +17,7 @@ class BinaryData(IngestionData):
def get_identifier(self):
metadata = self.get_metadata()
return self.name + "." + metadata["extension"]
return metadata["content_hash"]
def get_metadata(self):
self.ensure_metadata()

View file

@ -1,7 +1,11 @@
from uuid import uuid5, NAMESPACE_OID
from .data_types import IngestionData
def identify(data: IngestionData) -> str:
data_id: str = data.get_identifier()
from cognee.modules.users.models import User
return uuid5(NAMESPACE_OID, data_id)
def identify(data: IngestionData, user: User) -> str:
data_content_hash: str = data.get_identifier()
# return UUID hash of file contents + owner id
return uuid5(NAMESPACE_OID, f"{data_content_hash}{user.id}")

View file

@ -1,25 +1,28 @@
import string
import random
import os.path
import hashlib
from typing import BinaryIO, Union
from cognee.base_config import get_base_config
from cognee.infrastructure.files.storage import LocalStorage
from .classify import classify
def save_data_to_file(data: Union[str, BinaryIO], dataset_name: str, filename: str = None):
def save_data_to_file(data: Union[str, BinaryIO], filename: str = None):
base_config = get_base_config()
data_directory_path = base_config.data_root_directory
classified_data = classify(data, filename)
storage_path = data_directory_path + "/" + dataset_name.replace(".", "/")
storage_path = os.path.join(data_directory_path, "data")
LocalStorage.ensure_directory_exists(storage_path)
file_metadata = classified_data.get_metadata()
if "name" not in file_metadata or file_metadata["name"] is None:
letters = string.ascii_lowercase
random_string = "".join(random.choice(letters) for _ in range(32))
file_metadata["name"] = "text_" + random_string + ".txt"
data_contents = classified_data.get_data().encode('utf-8')
hash_contents = hashlib.md5(data_contents).hexdigest()
file_metadata["name"] = "text_" + hash_contents + ".txt"
file_name = file_metadata["name"]
LocalStorage(storage_path).store(file_name, classified_data.get_data())
# Don't save file if it already exists
if not os.path.isfile(os.path.join(storage_path, file_name)):
LocalStorage(storage_path).store(file_name, classified_data.get_data())
return "file://" + storage_path + "/" + file_name

View file

@ -0,0 +1,9 @@
"""
Custom exceptions for the Cognee API.
This module defines a set of exceptions for handling various shared utility errors
"""
from .exceptions import (
IngestionError,
)

View file

@ -0,0 +1,11 @@
from cognee.exceptions import CogneeApiError
from fastapi import status
class IngestionError(CogneeApiError):
def __init__(
self,
message: str = "Failed to load data.",
name: str = "IngestionError",
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
):
super().__init__(message, name, status_code)

View file

@ -1,6 +1,9 @@
""" This module contains utility functions for the cognee. """
import os
from typing import BinaryIO, Union
import requests
import hashlib
from datetime import datetime, timezone
import graphistry
import networkx as nx
@ -16,6 +19,8 @@ from cognee.infrastructure.databases.graph import get_graph_engine
from uuid import uuid4
import pathlib
from cognee.shared.exceptions import IngestionError
# Analytics Proxy Url, currently hosted by Vercel
proxy_url = "https://test.prometh.ai"
@ -70,6 +75,29 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
num_tokens = len(encoding.encode(string))
return num_tokens
def get_file_content_hash(file_obj: Union[str, BinaryIO]) -> str:
h = hashlib.md5()
try:
if isinstance(file_obj, str):
with open(file_obj, 'rb') as file:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file.read(h.block_size)
if not chunk:
break
h.update(chunk)
else:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file_obj.read(h.block_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
except IOError as e:
raise IngestionError(message=f"Failed to load data from {file}: {e}")
def trim_text_to_max_tokens(text: str, max_tokens: int, encoding_name: str) -> str:
"""

View file

@ -1,10 +1,10 @@
from typing import Any
from typing import Any, List
import dlt
import cognee.modules.ingestion as ingestion
from cognee.infrastructure.databases.relational import get_relational_engine
from cognee.modules.data.methods import create_dataset
from cognee.modules.data.operations.delete_metadata import delete_metadata
from cognee.modules.data.models.DatasetData import DatasetData
from cognee.modules.users.models import User
from cognee.modules.users.permissions.methods import give_permission_on_document
from cognee.shared.utils import send_telemetry
@ -23,12 +23,12 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
destination = destination,
)
@dlt.resource(standalone=True, merge_key="id")
async def data_resources(file_paths: str):
@dlt.resource(standalone=True, primary_key="id", merge_key="id")
async def data_resources(file_paths: List[str], user: User):
for file_path in file_paths:
with open(file_path.replace("file://", ""), mode="rb") as file:
classified_data = ingestion.classify(file)
data_id = ingestion.identify(classified_data)
data_id = ingestion.identify(classified_data, user)
file_metadata = classified_data.get_metadata()
yield {
"id": data_id,
@ -36,6 +36,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
"file_path": file_metadata["file_path"],
"extension": file_metadata["extension"],
"mime_type": file_metadata["mime_type"],
"content_hash": file_metadata["content_hash"],
"owner_id": str(user.id),
}
async def data_storing(data: Any, dataset_name: str, user: User):
@ -57,7 +59,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
with open(file_path.replace("file://", ""), mode = "rb") as file:
classified_data = ingestion.classify(file)
data_id = ingestion.identify(classified_data)
# data_id is the hash of file contents + owner id to avoid duplicate data
data_id = ingestion.identify(classified_data, user)
file_metadata = classified_data.get_metadata()
@ -70,6 +73,7 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
async with db_engine.get_async_session() as session:
dataset = await create_dataset(dataset_name, user.id, session)
# Check to see if data should be updated
data_point = (
await session.execute(select(Data).filter(Data.id == data_id))
).scalar_one_or_none()
@ -79,6 +83,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
data_point.raw_data_location = file_metadata["file_path"]
data_point.extension = file_metadata["extension"]
data_point.mime_type = file_metadata["mime_type"]
data_point.owner_id = user.id
data_point.content_hash = file_metadata["content_hash"]
await session.merge(data_point)
else:
data_point = Data(
@ -86,10 +92,20 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
name = file_metadata["name"],
raw_data_location = file_metadata["file_path"],
extension = file_metadata["extension"],
mime_type = file_metadata["mime_type"]
mime_type = file_metadata["mime_type"],
owner_id = user.id,
content_hash = file_metadata["content_hash"],
)
# Check if data is already in dataset
dataset_data = (
await session.execute(select(DatasetData).filter(DatasetData.data_id == data_id,
DatasetData.dataset_id == dataset.id))
).scalar_one_or_none()
# If data is not present in dataset add it
if dataset_data is None:
dataset.data.append(data_point)
await session.commit()
await write_metadata(data_item, data_point.id, file_metadata)
@ -109,16 +125,17 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
# To use sqlite with dlt dataset_name must be set to "main".
# Sqlite doesn't support schemas
run_info = pipeline.run(
data_resources(file_paths),
data_resources(file_paths, user),
table_name="file_metadata",
dataset_name="main",
write_disposition="merge",
)
else:
# Data should be stored in the same schema to allow deduplication
run_info = pipeline.run(
data_resources(file_paths),
data_resources(file_paths, user),
table_name="file_metadata",
dataset_name=dataset_name,
dataset_name="public",
write_disposition="merge",
)

View file

@ -7,7 +7,7 @@ def save_data_item_to_storage(data_item: Union[BinaryIO, str], dataset_name: str
# data is a file object coming from upload.
if hasattr(data_item, "file"):
file_path = save_data_to_file(data_item.file, dataset_name, filename=data_item.filename)
file_path = save_data_to_file(data_item.file, filename=data_item.filename)
elif isinstance(data_item, str):
# data is a file path
@ -15,7 +15,7 @@ def save_data_item_to_storage(data_item: Union[BinaryIO, str], dataset_name: str
file_path = data_item.replace("file://", "")
# data is text
else:
file_path = save_data_to_file(data_item, dataset_name)
file_path = save_data_to_file(data_item)
else:
raise IngestionError(message=f"Data type not supported: {type(data_item)}")

View file

@ -17,7 +17,7 @@ async def save_data_item_with_metadata_to_storage(
# data is a file object coming from upload.
elif hasattr(data_item, "file"):
file_path = save_data_to_file(
data_item.file, dataset_name, filename=data_item.filename
data_item.file, filename=data_item.filename
)
elif isinstance(data_item, str):
@ -26,7 +26,7 @@ async def save_data_item_with_metadata_to_storage(
file_path = data_item.replace("file://", "")
# data is text
else:
file_path = save_data_to_file(data_item, dataset_name)
file_path = save_data_to_file(data_item)
else:
raise IngestionError(message=f"Data type not supported: {type(data_item)}")

View file

@ -8,11 +8,11 @@ def get_data_from_llama_index(data_point: Union[Document, ImageDocument], datase
if type(data_point) == Document:
file_path = data_point.metadata.get("file_path")
if file_path is None:
file_path = save_data_to_file(data_point.text, dataset_name)
file_path = save_data_to_file(data_point.text)
return file_path
return file_path
elif type(data_point) == ImageDocument:
if data_point.image_path is None:
file_path = save_data_to_file(data_point.text, dataset_name)
file_path = save_data_to_file(data_point.text)
return file_path
return data_point.image_path

View file

@ -0,0 +1,2 @@
Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. It is primarily concerned with giving computers the ability to support and manipulate human language. It involves processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches. The goal is a computer capable of "understanding"[citation needed] the contents of documents, including the contextual nuances of the language within them. To this end, natural language processing often borrows ideas from theoretical linguistics. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Challenges in natural language processing frequently involve speech recognition, natural-language understanding, and natural-language generation.

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,160 @@
import hashlib
import os
import logging
import pathlib
import cognee
from cognee.infrastructure.databases.relational import get_relational_engine
logging.basicConfig(level=logging.DEBUG)
async def test_deduplication():
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
relational_engine = get_relational_engine()
dataset_name = "test_deduplication"
dataset_name2 = "test_deduplication2"
# Test deduplication of local files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/Natural_language_processing.txt"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/Natural_language_processing_copy.txt"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
assert result[0]["name"] == "Natural_language_processing_copy", "Result name does not match expected value."
result = await relational_engine.get_all_data_from_table("datasets")
assert len(result) == 2, "Unexpected number of datasets found."
assert result[0]["name"] == dataset_name, "Result name does not match expected value."
assert result[1]["name"] == dataset_name2, "Result name does not match expected value."
result = await relational_engine.get_all_data_from_table("dataset_data")
assert len(result) == 2, "Unexpected number of dataset data relationships found."
assert result[0]["data_id"] == result[1]["data_id"], "Data item is not reused between datasets."
assert result[0]["dataset_id"] != result[1]["dataset_id"], "Dataset items are not different."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of text input
text = """A quantum computer is a computer that takes advantage of quantum mechanical phenomena.
At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states.
Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster (with respect to input size scaling) than any modern "classical" computer. In particular, a large-scale quantum computer could break widely used encryption schemes and aid physicists in performing physical simulations; however, the current state of the technology is largely experimental and impractical, with several obstacles to useful applications. Moreover, scalable quantum computers do not hold promise for many practical tasks, and for many important tasks quantum speedups are proven impossible.
The basic unit of information in quantum computing is the qubit, similar to the bit in traditional digital electronics. Unlike a classical bit, a qubit can exist in a superposition of its two "basis" states. When measuring a qubit, the result is a probabilistic output of a classical bit, therefore making quantum computers nondeterministic in general. If a quantum computer manipulates the qubit in a particular way, wave interference effects can amplify the desired measurement results. The design of quantum algorithms involves creating procedures that allow a quantum computer to perform calculations efficiently and quickly.
Physically engineering high-quality qubits has proven challenging. If a physical qubit is not sufficiently isolated from its environment, it suffers from quantum decoherence, introducing noise into calculations. Paradoxically, perfectly isolating qubits is also undesirable because quantum computations typically need to initialize qubits, perform controlled qubit interactions, and measure the resulting quantum states. Each of those operations introduces errors and suffers from noise, and such inaccuracies accumulate.
In principle, a non-quantum (classical) computer can solve the same computational problems as a quantum computer, given enough time. Quantum advantage comes in the form of time complexity rather than computability, and quantum complexity theory shows that some quantum algorithms for carefully selected tasks require exponentially fewer computational steps than the best known non-quantum algorithms. Such tasks can in theory be solved on a large-scale quantum computer whereas classical computers would not finish computations in any reasonable amount of time. However, quantum speedup is not universal or even typical across computational tasks, since basic tasks such as sorting are proven to not allow any asymptotic quantum speedup. Claims of quantum supremacy have drawn significant attention to the discipline, but are demonstrated on contrived tasks, while near-term practical use cases remain limited.
"""
await cognee.add([text], dataset_name)
await cognee.add([text], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
assert hashlib.md5(text.encode('utf-8')).hexdigest() in result[0]["name"], "Content hash is not a part of file name."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of image files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/example.png"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/example_copy.png"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of sound files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/text_to_speech.mp3"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/text_to_speech_copy.mp3"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
async def test_deduplication_postgres():
cognee.config.set_vector_db_config(
{
"vector_db_url": "",
"vector_db_key": "",
"vector_db_provider": "pgvector"
}
)
cognee.config.set_relational_db_config(
{
"db_name": "cognee_db",
"db_host": "127.0.0.1",
"db_port": "5432",
"db_username": "cognee",
"db_password": "cognee",
"db_provider": "postgres",
}
)
await test_deduplication()
async def test_deduplication_sqlite():
cognee.config.set_vector_db_config(
{
"vector_db_url": "",
"vector_db_key": "",
"vector_db_provider": "lancedb"
}
)
cognee.config.set_relational_db_config(
{
"db_provider": "sqlite",
}
)
await test_deduplication()
async def main():
data_directory_path = str(
pathlib.Path(
os.path.join(pathlib.Path(__file__).parent, ".data_storage/test_deduplication")
).resolve()
)
cognee.config.data_root_directory(data_directory_path)
cognee_directory_path = str(
pathlib.Path(
os.path.join(pathlib.Path(__file__).parent, ".cognee_system/test_deduplication")
).resolve()
)
cognee.config.system_root_directory(cognee_directory_path)
await test_deduplication_postgres()
await test_deduplication_sqlite()
if __name__ == "__main__":
import asyncio
asyncio.run(main())