feat: create_enrichments.py

This commit is contained in:
lxobr 2025-10-21 00:34:12 +02:00
parent ce418828b4
commit 834cf8b113
4 changed files with 158 additions and 7 deletions

View file

@ -0,0 +1,145 @@
from __future__ import annotations
from typing import Dict, List, Optional
from uuid import NAMESPACE_OID, uuid5
from cognee.infrastructure.llm import LLMGateway
from cognee.infrastructure.llm.prompts.read_query_prompt import read_query_prompt
from cognee.shared.logging_utils import get_logger
from cognee.modules.engine.models import NodeSet
from .models import FeedbackEnrichment
logger = get_logger("create_enrichments")
def _validate_improved_answers(improved_answers: List[Dict]) -> bool:
"""Validate that all items contain required fields for enrichment creation."""
required_fields = [
"question",
"answer", # This is the original answer field from feedback_interaction
"improved_answer",
"new_context",
"feedback_id",
"interaction_id",
]
return all(
all(item.get(field) is not None for field in required_fields) for item in improved_answers
)
def _validate_uuid_fields(improved_answers: List[Dict]) -> bool:
"""Validate that feedback_id and interaction_id are valid UUID objects."""
try:
for item in improved_answers:
feedback_id = item.get("feedback_id")
interaction_id = item.get("interaction_id")
if not isinstance(feedback_id, type(feedback_id)) or not isinstance(
interaction_id, type(interaction_id)
):
return False
return True
except Exception:
return False
async def _generate_enrichment_report(
question: str, improved_answer: str, new_context: str, report_prompt_location: str
) -> str:
"""Generate educational report using feedback report prompt."""
try:
prompt_template = read_query_prompt(report_prompt_location)
rendered_prompt = prompt_template.format(
question=question,
improved_answer=improved_answer,
new_context=new_context,
)
return await LLMGateway.acreate_structured_output(
text_input=rendered_prompt,
system_prompt="You are a helpful assistant that creates educational content.",
response_model=str,
)
except Exception as exc:
logger.warning("Failed to generate enrichment report", error=str(exc), question=question)
return f"Educational content for: {question} - {improved_answer}"
async def _create_enrichment_datapoint(
improved_answer_item: Dict,
report_text: str,
) -> Optional[FeedbackEnrichment]:
"""Create a single FeedbackEnrichment DataPoint with proper ID and nodeset assignment."""
try:
question = improved_answer_item["question"]
improved_answer = improved_answer_item["improved_answer"]
# Create nodeset following UserQAFeedback pattern
nodeset = NodeSet(
id=uuid5(NAMESPACE_OID, name="FeedbackEnrichment"), name="FeedbackEnrichment"
)
enrichment = FeedbackEnrichment(
id=str(uuid5(NAMESPACE_OID, f"{question}_{improved_answer}")),
text=report_text,
question=question,
original_answer=improved_answer_item["answer"], # Use "answer" field
improved_answer=improved_answer,
feedback_id=improved_answer_item["feedback_id"],
interaction_id=improved_answer_item["interaction_id"],
belongs_to_set=nodeset,
)
return enrichment
except Exception as exc:
logger.error(
"Failed to create enrichment datapoint",
error=str(exc),
question=improved_answer_item.get("question"),
)
return None
async def create_enrichments(
improved_answers: List[Dict],
report_prompt_location: str = "feedback_report_prompt.txt",
) -> List[FeedbackEnrichment]:
"""Create FeedbackEnrichment DataPoint instances from improved answers."""
if not improved_answers:
logger.info("No improved answers provided; returning empty list")
return []
if not _validate_improved_answers(improved_answers):
logger.error("Input validation failed; missing required fields")
return []
if not _validate_uuid_fields(improved_answers):
logger.error("UUID validation failed; invalid feedback_id or interaction_id")
return []
logger.info("Creating enrichments", count=len(improved_answers))
enrichments: List[FeedbackEnrichment] = []
for improved_answer_item in improved_answers:
question = improved_answer_item["question"]
improved_answer = improved_answer_item["improved_answer"]
new_context = improved_answer_item["new_context"]
report_text = await _generate_enrichment_report(
question, improved_answer, new_context, report_prompt_location
)
enrichment = await _create_enrichment_datapoint(improved_answer_item, report_text)
if enrichment:
enrichments.append(enrichment)
else:
logger.warning(
"Failed to create enrichment",
question=question,
interaction_id=improved_answer_item.get("interaction_id"),
)
logger.info("Created enrichments", successful=len(enrichments))
return enrichments

View file

@ -66,7 +66,10 @@ async def _generate_improved_answer_for_single_interaction(
retrieved_context = await retriever.get_context(query_text)
completion = await retriever.get_structured_completion(
query=query_text, context=retrieved_context, response_model=ImprovedAnswerResponse
query=query_text,
context=retrieved_context,
response_model=ImprovedAnswerResponse,
max_iter=1,
)
new_context_text = await retriever.resolve_edges_to_text(retrieved_context)

View file

@ -2,7 +2,7 @@ from typing import List, Optional, Union
from uuid import UUID
from cognee.infrastructure.engine import DataPoint
from cognee.modules.engine.models import Entity
from cognee.modules.engine.models import Entity, NodeSet
from cognee.tasks.temporal_graph.models import Event
@ -18,3 +18,4 @@ class FeedbackEnrichment(DataPoint):
improved_answer: str
feedback_id: UUID
interaction_id: UUID
belongs_to_set: Optional[NodeSet] = None

View file

@ -6,6 +6,7 @@ from cognee.modules.pipelines.tasks.task import Task
from cognee.tasks.feedback.extract_feedback_interactions import extract_feedback_interactions
from cognee.tasks.feedback.generate_improved_answers import generate_improved_answers
from cognee.tasks.feedback.create_enrichments import create_enrichments
CONVERSATION = [
@ -48,11 +49,12 @@ async def run_question_and_submit_feedback(question_text: str) -> bool:
async def run_feedback_enrichment_memify(last_n: int = 5):
"""Execute memify with extraction and answer improvement tasks."""
"""Execute memify with extraction, answer improvement, and enrichment creation tasks."""
# Instantiate tasks with their own kwargs
extraction_tasks = [Task(extract_feedback_interactions, last_n=last_n)]
enrichment_tasks = [
Task(generate_improved_answers, retriever_name="graph_completion_cot", top_k=20)
Task(generate_improved_answers, retriever_name="graph_completion_cot", top_k=20),
Task(create_enrichments),
]
await cognee.memify(
extraction_tasks=extraction_tasks,
@ -63,9 +65,9 @@ async def run_feedback_enrichment_memify(last_n: int = 5):
async def main():
# await initialize_conversation_and_graph(CONVERSATION)
# is_correct = await run_question_and_submit_feedback("Who told Bob to bring the donuts?")
is_correct = False
await initialize_conversation_and_graph(CONVERSATION)
is_correct = await run_question_and_submit_feedback("Who told Bob to bring the donuts?")
# is_correct = False
if not is_correct:
await run_feedback_enrichment_memify(last_n=5)