Merge pull request #40 from topoteretes/fixes_for_local_run

added a few updates for easier running in local
This commit is contained in:
Vasilije 2024-02-11 22:15:06 +01:00 committed by GitHub
commit 817df19bc7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 40 additions and 21 deletions

55
api.py
View file

@ -24,7 +24,6 @@ logging.basicConfig(
logger = logging.getLogger(__name__)
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
app = FastAPI(debug=True)
@ -36,10 +35,16 @@ app = FastAPI(debug=True)
from fastapi import Depends
config = Config()
config.load()
@app.get(
"/",
)
"""
Root endpoint that returns a welcome message.
"""
async def root():
class ImageResponse(BaseModel):
success: bool
message: str
@ -66,10 +71,11 @@ def health_check():
class Payload(BaseModel):
payload: Dict[str, Any]
@app.post("/add-memory", response_model=dict)
async def add_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
@ -87,7 +93,8 @@ async def add_memory(
else:
content = None
output = await load_documents_to_vectorstore(session, decoded_payload['user_id'], content=content, loader_settings=settings_for_loader)
output = await load_documents_to_vectorstore(session, decoded_payload['user_id'], content=content,
loader_settings=settings_for_loader)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
@ -95,10 +102,11 @@ async def add_memory(
content={"response": {"error": str(e)}}, status_code=503
)
@app.post("/add-architecture-public-memory", response_model=dict)
async def add_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
@ -117,7 +125,8 @@ async def add_memory(
"path": [".data"]
}
output = await load_documents_to_vectorstore(session, user_id=user_id, content=content, loader_settings=loader_settings)
output = await load_documents_to_vectorstore(session, user_id=user_id, content=content,
loader_settings=loader_settings)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
@ -125,6 +134,7 @@ async def add_memory(
content={"response": {"error": str(e)}}, status_code=503
)
@app.post("/user-query-to-graph")
async def user_query_to_graph(payload: Payload):
try:
@ -133,7 +143,8 @@ async def user_query_to_graph(payload: Payload):
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await user_query_to_graph_db(session= session, user_id= decoded_payload['user_id'],query_input =decoded_payload['query'])
result = await user_query_to_graph_db(session=session, user_id=decoded_payload['user_id'],
query_input=decoded_payload['query'])
return result
@ -155,18 +166,23 @@ async def document_to_graph_db(payload: Payload):
else:
memory_type = None
async with session_scope(session=AsyncSessionLocal()) as session:
result = await add_documents_to_graph_db(session =session, user_id = decoded_payload['user_id'], document_memory_types =memory_type)
result = await add_documents_to_graph_db(session=session, user_id=decoded_payload['user_id'],
document_memory_types=memory_type)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/cognitive-context-enrichment")
async def cognitive_context_enrichment(payload: Payload):
try:
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
result = await user_context_enrichment(session, user_id = decoded_payload['user_id'], query= decoded_payload['query'], generative_response=decoded_payload['generative_response'], memory_type= decoded_payload['memory_type'])
result = await user_context_enrichment(session, user_id=decoded_payload['user_id'],
query=decoded_payload['query'],
generative_response=decoded_payload['generative_response'],
memory_type=decoded_payload['memory_type'])
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
@ -179,7 +195,8 @@ async def classify_user_query(payload: Payload):
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
from main import relevance_feedback
result = await relevance_feedback( query= decoded_payload['query'], input_type=decoded_payload['knowledge_type'])
result = await relevance_feedback(query=decoded_payload['query'],
input_type=decoded_payload['knowledge_type'])
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
@ -202,7 +219,6 @@ async def user_query_classfier(payload: Payload):
raise HTTPException(status_code=500, detail=str(e))
@app.post("/drop-db")
async def drop_db(payload: Payload):
try:
@ -210,7 +226,7 @@ async def drop_db(payload: Payload):
if decoded_payload['operation'] == 'drop':
if os.environ.get('AWS_ENV') == 'dev':
if os.environ.get('AWS_ENV') == 'dev':
host = os.environ.get('POSTGRES_HOST')
username = os.environ.get('POSTGRES_USER')
password = os.environ.get('POSTGRES_PASSWORD')
@ -237,7 +253,7 @@ async def drop_db(payload: Payload):
engine = create_admin_engine(username, password, host, database_name)
create_database(engine)
return JSONResponse(content={"response": " DB created"}, status_code=200)
return JSONResponse(content={"response": " DB drop"}, status_code=200)
@ -268,7 +284,7 @@ async def create_public_memory(payload: Payload):
# Execute the query - replace this with the actual execution method
# async with session_scope(session=AsyncSessionLocal()) as session:
# from main import create_public_memory
# Assuming you have a method in Neo4jGraphDB to execute the query
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await create_public_memory(user_id=user_id, labels=labels, topic=topic)
return JSONResponse(content={"response": result}, status_code=200)
@ -295,12 +311,13 @@ async def attach_user_to_public_memory(payload: Payload):
from main import attach_user_to_memory, create_public_memory
# Assuming you have a method in Neo4jGraphDB to execute the query
await create_public_memory(user_id=decoded_payload['user_id'], topic=topic, labels=labels)
result = await attach_user_to_memory( user_id = decoded_payload['user_id'], topic=topic, labels=labels)
result = await attach_user_to_memory(user_id=decoded_payload['user_id'], topic=topic, labels=labels)
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/unlink-user-from-public-memory")
async def unlink_user_from_public_memory(payload: Payload):
try:
@ -315,12 +332,14 @@ async def unlink_user_from_public_memory(payload: Payload):
async with session_scope(session=AsyncSessionLocal()) as session:
from main import unlink_user_from_memory
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await unlink_user_from_memory( user_id = decoded_payload['user_id'], topic=topic, labels=decoded_payload['labels'])
result = await unlink_user_from_memory(user_id=decoded_payload['user_id'], topic=topic,
labels=decoded_payload['labels'])
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def start_api_server(host: str = "0.0.0.0", port: int = 8000):
"""
Start the API server using uvicorn.

View file

@ -560,7 +560,7 @@ class Neo4jGraphDB(AbstractGraphDB):
summary: '{summary}',
documentCategory: '{document_category}',
d_id: '{d_id}',
created_at: timestamp(),
created_at: timestamp()
}})
// Link the Document node to the {memory_node_type} node

View file

@ -281,7 +281,7 @@ async def add_documents_to_graph_db(session: AsyncSession, user_id: str= None, d
logging.info("Retrieval chunks are", retrieval_chunks)
classification = await classify_documents(doc_name, document_id =doc_id, content=concatenated_retrievals)
logging.info("Classification is", str(classification))
logging.info("Classification is %s", str(classification))
neo4j_graph_db = Neo4jGraphDB(url=config.graph_database_url, username=config.graph_database_username,
password=config.graph_database_password)
if document_memory_types == ['PUBLIC']:
@ -305,7 +305,7 @@ async def add_documents_to_graph_db(session: AsyncSession, user_id: str= None, d
else:
rs = neo4j_graph_db.create_document_node_cypher(classification, user_id, memory_type='SemanticMemory')
neo4j_graph_db.close()
logging.info("Cypher query is", rs)
logging.info("Cypher query is %s", str(rs))
neo4j_graph_db = Neo4jGraphDB(url=config.graph_database_url, username=config.graph_database_username,
password=config.graph_database_password)
neo4j_graph_db.query(rs)