added initial version of the code for the modulator auto eval logic

This commit is contained in:
Vasilije 2023-09-07 14:42:31 +02:00
parent 27df32e421
commit 8113787cce
12 changed files with 1286 additions and 85 deletions

View file

@ -216,6 +216,35 @@ async def create_context(
except Exception as e:
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
@app.post("/buffer/provide-feedback", response_model=dict)
async def provide_feedback(
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
decoded_payload = payload.payload
Memory_ = Memory(user_id=decoded_payload["user_id"])
await Memory_.async_init()
# memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
if decoded_payload["total_score"] is None:
output = await Memory_._provide_feedback(
user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=None, total_score=decoded_payload["total_score"]
)
return JSONResponse(content={"response": output}, status_code=200)
else:
output = await Memory_._provide_feedback(
user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"], total_score=None
)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
def start_api_server(host: str = "0.0.0.0", port: int = 8000):
"""
Start the API server using uvicorn.

35
level_2/auth/auth.py Normal file
View file

@ -0,0 +1,35 @@
import os
import requests
from dotenv import load_dotenv
from fastapi import Depends, HTTPException
from starlette.status import HTTP_403_FORBIDDEN
from auth.cognito.JWTBearer import JWKS, JWTBearer, JWTAuthorizationCredentials
load_dotenv() # Automatically load environment variables from a '.env' file.
# jwks = JWKS.parse_obj(
# requests.get(
# f"https://cognito-idp.{os.environ.get('eu-west-1:46372257029')}.amazonaws.com/"
# f"{os.environ.get('eu-west-1_3VUqKzMgj')}/.well-known/jwks.json"
# ).json()
# )
# Construct the Cognito User Pool URL using the correct syntax
region = "eu-west-1"
user_pool_id = "eu-west-1_viUyNCqKp"
cognito_url = f"https://cognito-idp.{region}.amazonaws.com/{user_pool_id}/.well-known/jwks.json"
# Fetch the JWKS using the updated URL
jwks = JWKS.parse_obj(requests.get(cognito_url).json())
auth = JWTBearer(jwks)
async def get_current_user(
credentials: JWTAuthorizationCredentials = Depends(auth)
) -> str:
try:
return credentials.claims["username"]
except KeyError:
HTTPException(status_code=HTTP_403_FORBIDDEN, detail="Username missing")

View file

@ -0,0 +1,62 @@
from cognito.JWTBearer import JWKS, JWTBearer, JWTAuthorizationCredentials
import requests
region = "eu-west-1"
user_pool_id = "" #needed
cognito_url = f"https://cognito-idp.{region}.amazonaws.com/{user_pool_id}/.well-known/jwks.json"
# Fetch the JWKS using the updated URL
jwks = JWKS.parse_obj(requests.get(cognito_url).json())
print(jwks)
auth = JWTBearer(jwks)
import requests
# Set the Cognito authentication endpoint URL
auth = JWTBearer(jwks)
# Set the user credentials
username = "" #needed
password = "" #needed
# Create the authentication payload
payload = {
"username": username,
"password": password
}
# Set the Cognito authentication endpoint URL
# Set the Cognito token endpoint URL
token_endpoint = f"https://your-cognito-domain.auth.{region}.amazoncognito.com/oauth2/token"
# Set the client credentials
client_id = "" #needed
client_secret = ""
import boto3
def authenticate_and_get_token(username: str, password: str,
user_pool_id: str, app_client_id: str) -> None:
client = boto3.client('cognito-idp')
resp = client.admin_initiate_auth(
UserPoolId=user_pool_id,
ClientId=app_client_id,
AuthFlow='ADMIN_NO_SRP_AUTH',
AuthParameters={
"USERNAME": username,
"PASSWORD": password
}
)
print("Log in success")
print("Access token:", resp['AuthenticationResult']['AccessToken'])
print("ID token:", resp['AuthenticationResult']['IdToken'])
authenticate_and_get_token(username, password, user_pool_id, client_id)

View file

@ -0,0 +1,72 @@
from typing import Dict, Optional, List
from fastapi import HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from jose import jwt, jwk, JWTError
from jose.utils import base64url_decode
from pydantic import BaseModel
from starlette.requests import Request
from starlette.status import HTTP_403_FORBIDDEN
JWK = Dict[str, str]
class JWKS(BaseModel):
keys: List[JWK]
class JWTAuthorizationCredentials(BaseModel):
jwt_token: str
header: Dict[str, str]
claims: Dict[str, str]
signature: str
message: str
class JWTBearer(HTTPBearer):
def __init__(self, jwks: JWKS, auto_error: bool = True):
super().__init__(auto_error=auto_error)
self.kid_to_jwk = {jwk["kid"]: jwk for jwk in jwks.keys}
def verify_jwk_token(self, jwt_credentials: JWTAuthorizationCredentials) -> bool:
try:
public_key = self.kid_to_jwk[jwt_credentials.header["kid"]]
except KeyError:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="JWK public key not found"
)
key = jwk.construct(public_key)
decoded_signature = base64url_decode(jwt_credentials.signature.encode())
return key.verify(jwt_credentials.message.encode(), decoded_signature)
async def __call__(self, request: Request) -> Optional[JWTAuthorizationCredentials]:
credentials: HTTPAuthorizationCredentials = await super().__call__(request)
if credentials:
if not credentials.scheme == "Bearer":
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Wrong authentication method"
)
jwt_token = credentials.credentials
message, signature = jwt_token.rsplit(".", 1)
try:
jwt_credentials = JWTAuthorizationCredentials(
jwt_token=jwt_token,
header=jwt.get_unverified_header(jwt_token),
claims=jwt.get_unverified_claims(jwt_token),
signature=signature,
message=message,
)
except JWTError:
raise HTTPException(status_code=HTTP_403_FORBIDDEN, detail="JWK invalid")
if not self.verify_jwk_token(jwt_credentials):
raise HTTPException(status_code=HTTP_403_FORBIDDEN, detail="JWK invalid")
return jwt_credentials

View file

@ -15,11 +15,12 @@ from langchain.retrievers import WeaviateHybridSearchRetriever
from langchain.tools import tool
from marvin import ai_classifier
from pydantic import parse_obj_as
from weaviate.gql.get import HybridFusion
import numpy as np
load_dotenv()
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from typing import Optional
from typing import Optional, Dict, List, Union
import tracemalloc
@ -77,6 +78,35 @@ ST_MEMORY_ID_DEFAULT = "0000"
BUFFER_ID_DEFAULT = "0000"
class DifferentiableLayer:
def __init__(self, attention_modulators: dict):
self.weights = {modulator: 1.0 for modulator in attention_modulators}
self.learning_rate = 0.1
self.regularization_lambda = 0.01
self.weight_decay = 0.99
async def adjust_weights(self, feedbacks: list[float]):
"""
Adjusts the weights of the attention modulators based on user feedbacks.
Parameters:
- feedbacks: A list of feedback scores (between 0 and 1).
"""
avg_feedback = np.mean(feedbacks)
feedback_diff = 1.0 - avg_feedback
# Adjust weights based on average feedback
for modulator in self.weights:
self.weights[modulator] += self.learning_rate * (-feedback_diff) - self.regularization_lambda * \
self.weights[modulator]
self.weights[modulator] *= self.weight_decay
# Decaying the learning rate
self.learning_rate *= 0.99
async def get_weights(self):
return self.weights
class VectorDBFactory:
def create_vector_db(
self,
@ -352,6 +382,7 @@ class WeaviateVectorDB(VectorDB):
)
.with_hybrid(
query=observation,
fusion_type=HybridFusion.RELATIVE_SCORE
)
.with_autocut(1)
.with_where(params_user_id)
@ -452,7 +483,8 @@ class BaseMemory:
):
if self.db_type == "weaviate":
return await self.vector_db.add_memories(
observation=observation, loader_settings=loader_settings, params=params, namespace=namespace
observation=observation, loader_settings=loader_settings,
params=params, namespace=namespace
)
# Add other db_type conditions if necessary
@ -464,7 +496,8 @@ class BaseMemory:
):
if self.db_type == "weaviate":
return await self.vector_db.fetch_memories(
observation=observation, params=params, namespace=namespace
observation=observation, params=params,
namespace=namespace
)
async def delete_memories(self, params: Optional[str] = None):
@ -483,8 +516,7 @@ class SemanticMemory(BaseMemory):
db_type: str = "weaviate",
):
super().__init__(
user_id, memory_id, index_name, db_type, namespace="SEMANTICMEMORY"
)
user_id, memory_id, index_name, db_type, namespace="SEMANTICMEMORY")
class EpisodicMemory(BaseMemory):
@ -580,12 +612,66 @@ class EpisodicBuffer(BaseMemory):
)
return [str(frequency), result_output["data"]["Get"]["EPISODICMEMORY"][0]]
async def relevance(self, observation: str, namespace: str) -> list[str]:
"""Relevance - Score between 0 and 1 on how often was the final information relevant to the user in the past.
Stored in the episodic memory, mainly to show how well a buffer did the job
Starts at 0, gets updated based on the user feedback"""
async def repetition(self, observation: str, namespace: str) -> list[str]:
"""Repetition - Score between 0 and 1 based on how often and at what intervals a memory has been revisited.
Accounts for the spacing effect, where memories accessed at increasing intervals are given higher scores.
"""
weaviate_client = self.init_client(namespace=namespace)
return ["0", "memory"]
result_output = await self.fetch_memories(
observation=observation, params=None, namespace=namespace
)
access_times = result_output["data"]["Get"]["EPISODICMEMORY"][0]["_additional"]["accessTimes"]
# Calculate repetition score based on access times
if not access_times or len(access_times) == 1:
return ["0", result_output["data"]["Get"]["EPISODICMEMORY"][0]]
# Sort access times
access_times = sorted(access_times)
# Calculate intervals between consecutive accesses
intervals = [access_times[i + 1] - access_times[i] for i in range(len(access_times) - 1)]
# A simple scoring mechanism: Longer intervals get higher scores, as they indicate spaced repetition
repetition_score = sum([1.0 / (interval + 1) for interval in intervals]) / len(intervals)
return [str(repetition_score), result_output["data"]["Get"]["EPISODICMEMORY"][0]]
async def relevance(self, observation: str, namespace: str) -> list[str]:
"""
Fetches the relevance score for a given observation from the episodic memory.
Parameters:
- observation: The user's query or observation.
- namespace: The namespace for the data.
Returns:
- The relevance score between 0 and 1.
"""
# Fetch the memory content based on the observation
result_output = await self.fetch_memories(
observation=observation, params=None, namespace=namespace
)
# Extract the relevance score from the memory content
score = result_output["data"]["Get"]["EPISODICMEMORY"][0]["_additional"]["score"]
return score
#each of the requests is numbered, and then the previous requests are retrieved . The request is classified based on past and current content as :
# 1. Very positive request
# 2. Positive request
# 3. Neutral request
# 4. Negative request
# 5. Very negative request
# After this, we update the weights of the request based on the classification of the request.
# After updating the weights, we update the buffer with the new weights. When new weights are calculated, we start from the updated values
# Which chunking strategy works best?
# Adding to the buffer - process the weights, and then use them as filters
async def saliency(self, observation: str, namespace=None) -> list[str]:
"""Determines saliency by scoring the set of retrieved documents against each other and trying to determine saliency
@ -617,6 +703,19 @@ class EpisodicBuffer(BaseMemory):
# Example Usage
# attention_modulators = {"freshness": 0.8, "frequency": 0.7, "relevance": 0.9, "saliency": 0.85}
# diff_layer = DifferentiableLayer(attention_modulators)
#
# # Sample batch feedback
# feedbacks = [0.75, 0.8, 0.9]
#
# # Adjust weights based on batch feedback
# diff_layer.adjust_weights(feedbacks)
#
# print(diff_layer.get_weights())
async def handle_modulator(
self,
modulator_name: str,
@ -679,12 +778,6 @@ class EpisodicBuffer(BaseMemory):
attention_modulators: dict = None,
):
"""Generates the context to be used for the buffer and passed to the agent"""
try:
# we delete all memories in the episodic buffer, so we can start fresh
await self.delete_memories()
except:
# in case there are no memories, we pass
pass
# we just filter the data here to make sure input is clean
prompt_filter = ChatPromptTemplate.from_template(
"""Filter and remove uneccessary information that is not relevant in the query to
@ -695,40 +788,106 @@ class EpisodicBuffer(BaseMemory):
# this part is partially done but the idea is to apply different attention modulators
# to the data to fetch the most relevant information from the vector stores
context = []
if attention_modulators:
from typing import Optional, Dict, List, Union
class BufferModulators(BaseModel):
"""Value of buffer modulators"""
frequency: str = Field(..., description="Frequency score of the document")
saliency: str = Field(..., description="Saliency score of the document")
relevance: str = Field(..., description="Relevance score of the document")
description:str = Field(..., description="Latest buffer modulators")
direction: str= Field(..., description="Increase or a decrease of the modulator")
lookup_value_semantic = await self.fetch_memories(
observation=str(output), namespace="SEMANTICMEMORY"
)
context = []
for memory in lookup_value_semantic["data"]["Get"]["SEMANTICMEMORY"]:
# extract memory id, and pass it to fetch function as a parameter
modulators = list(attention_modulators.keys())
for modulator in modulators:
result = await self.handle_modulator(
modulator,
attention_modulators,
str(output),
namespace="EPISODICMEMORY",
parser = PydanticOutputParser(pydantic_object=BufferModulators)
prompt = PromptTemplate(
template="""Structure the buffer modulators to be used for the buffer. \n
{format_instructions} \nOriginal observation is:
{query}\n """,
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
# check if modulators exist, initialize the modulators if needed
if attention_modulators is None:
try:
attention_modulators = await self.fetch_memories(observation="Attention modulators",
namespace="BUFFERMEMORY")
lookup_value_episodic = await self.fetch_memories(
observation=str(output), namespace="EPISODICCMEMORY"
)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier. Determine if based on the previous query if the user was satisfied with the output : {query}"""
)
json_structure = {
"name": "classifier",
"description": "Classification indicating if it's output is satisfactory",
"type": "boolean",
"required": True
}
chain_filter = prompt_classify | self.llm.bind(function_call= {"name": "classifier"}, functions= json_structure)
classifier_output = await chain_filter.ainvoke({"query": lookup_value_episodic})
arguments_str = classifier_output.additional_kwargs['function_call']['arguments']
arguments_dict = json.loads(arguments_str)
classfier_value = arguments_dict.get('classifier', None)
if classfier_value:
# adjust the weights of the modulators by adding a positive value
prompt_classify = ChatPromptTemplate.from_template(
""" We know we need to increase the classifiers for our AI system. The classifiers are {modulators} The query is: {query}. Which of the classifiers should we decrease? Return just the modulator and desired value"""
)
if result:
context.append(result)
context.append(memory)
else:
# defaults to semantic search if we don't want to apply algorithms on the vectordb data
lookup_value_episodic = await self.fetch_memories(
observation=str(output), namespace="EPISODICMEMORY"
)
lookup_value_semantic = await self.fetch_memories(
observation=str(output), namespace="SEMANTICMEMORY"
)
lookup_value_buffer = await self.fetch_memories(observation=str(output))
chain_modulator = prompt_classify | self.llm
classifier_output = await chain_modulator.ainvoke({"query": lookup_value_episodic, "modulators": str(attention_modulators)})
diff_layer = DifferentiableLayer(attention_modulators)
adjusted_modulator = diff_layer.adjust_weights(classifier_output)
_input = prompt.format_prompt(query=adjusted_modulator)
document_context_result = self.llm_base(_input.to_string())
document_context_result_parsed = parser.parse(document_context_result)
await self.add_memories(observation=document_context_result_parsed, namespace="BUFFERMEMORY")
else:
# adjust the weights of the modulators by adding a negative value
prompt_classify = ChatPromptTemplate.from_template(
""" We know we need to decrease the classifiers for our AI system. The classifiers are {modulators} The query is: {query}. Which of the classifiers should we decrease? Return just the modulator and desired value"""
)
chain_modulator_reduction = prompt_classify | self.llm
classifier_output = await chain_modulator_reduction.ainvoke({"query": lookup_value_episodic, "modulators": str(attention_modulators)})
diff_layer = DifferentiableLayer(attention_modulators)
adjusted_modulator =diff_layer.adjust_weights(classifier_output)
_input = prompt.format_prompt(query=adjusted_modulator)
document_context_result = self.llm_base(_input.to_string())
document_context_result_parsed = parser.parse(document_context_result)
await self.add_memories(observation=document_context_result_parsed, namespace="BUFFERMEMORY")
except:
# initialize the modulators with default values if they are not provided
print("Starting with default modulators")
attention_modulators = {
"freshness": 0.5,
"frequency": 0.5,
"relevance": 0.5,
"saliency": 0.5,
}
elif attention_modulators:
pass
lookup_value_semantic = await self.fetch_memories(
observation=str(output), namespace="SEMANTICMEMORY"
)
context = []
for memory in lookup_value_semantic["data"]["Get"]["SEMANTICMEMORY"]:
# extract memory id, and pass it to fetch function as a parameter
modulators = list(attention_modulators.keys())
for modulator in modulators:
result = await self.handle_modulator(
modulator,
attention_modulators,
str(output),
namespace="EPISODICMEMORY",
)
if result:
context.append(result)
context.append(memory)
context.append(lookup_value_buffer)
context.append(lookup_value_semantic)
context.append(lookup_value_episodic)
class BufferModulators(BaseModel):
frequency: str = Field(..., description="Frequency score of the document")
@ -939,12 +1098,7 @@ class EpisodicBuffer(BaseMemory):
result_tasks.append(task)
result_tasks.append(output)
# print("HERE IS THE RESULT TASKS", str(result_tasks))
#
# buffer_result = await self.fetch_memories(observation=str(user_input))
#
# print("HERE IS THE RESULT TASKS", str(buffer_result))
class EpisodicTask(BaseModel):
"""Schema for an individual task."""
@ -972,18 +1126,19 @@ class EpisodicBuffer(BaseMemory):
user_query: str = Field(
..., description="The order at which the task needs to be performed"
)
attention_modulators: str = Field(..., description="List of attention modulators")
parser = PydanticOutputParser(pydantic_object=EpisodicList)
date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
prompt = PromptTemplate(
template="Format the result.\n{format_instructions}\nOriginal query is: {query}\n Steps are: {steps}, buffer is: {buffer}",
input_variables=["query", "steps", "buffer"],
template="Format the result.\n{format_instructions}\nOriginal query is: {query}\n Steps are: {steps}, buffer is: {buffer}, date is:{date}, attention modulators are: {attention_modulators} \n",
input_variables=["query", "steps", "buffer", "date", "attention_modulators"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
_input = prompt.format_prompt(
query=user_input, steps=str(tasks_list)
, buffer=str(result_tasks)
, buffer=str(result_tasks), date= date, attention_modulators=attention_modulators
)
# return "a few things to do like load episodic memory in a structured format"
@ -992,8 +1147,7 @@ class EpisodicBuffer(BaseMemory):
lookup_value = await self.add_memories(
observation=str(result_parsing.json()), params=params, namespace='EPISODICMEMORY'
)
# print("THE RESULT OF THIS QUERY IS ", result_parsing.json())
await self.delete_memories()
# await self.delete_memories()
return result_parsing.json()
@ -1188,6 +1342,9 @@ class Memory:
async def _available_operations(self):
return await self.long_term_memory.episodic_buffer.available_operations()
async def _provide_feedback(self, score:str =None, params: dict = None, attention_modulators: dict = None):
return await self.short_term_memory.episodic_buffer.provide_feedback(score=score, params=params, attention_modulators=attention_modulators)
async def main():
@ -1212,8 +1369,8 @@ async def main():
"source": "url",
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf"
}
load_jack_london = await memory._add_semantic_memory(observation = "bla", loader_settings=loader_settings, params=params)
print(load_jack_london)
# load_jack_london = await memory._add_semantic_memory(observation = "bla", loader_settings=loader_settings, params=params)
# print(load_jack_london)
modulator = {"relevance": 0.0, "saliency": 0.0, "frequency": 0.0}
# #

734
level_2/poetry.lock generated
View file

@ -261,17 +261,17 @@ numpy = {version = ">=1.19.0", markers = "python_version >= \"3.9\""}
[[package]]
name = "boto3"
version = "1.28.32"
version = "1.28.37"
description = "The AWS SDK for Python"
optional = false
python-versions = ">= 3.7"
files = [
{file = "boto3-1.28.32-py3-none-any.whl", hash = "sha256:ed787f250ce2562c7744395bdf32b5a7bc9184126ef50a75e97bcb66043dccf3"},
{file = "boto3-1.28.32.tar.gz", hash = "sha256:b505faa126db84e226f6f8d242a798fae30a725f0cac8a76c6aca9ace4e8eb28"},
{file = "boto3-1.28.37-py3-none-any.whl", hash = "sha256:709cf438ad3ea48d426e4659538fe1148fc2719469b52179d07a11c5d26abac6"},
{file = "boto3-1.28.37.tar.gz", hash = "sha256:4aec1b54ba6cd352abba2cdd7cdc76e631a4d3ce79c55c0719f85f9c9842e4a2"},
]
[package.dependencies]
botocore = ">=1.31.32,<1.32.0"
botocore = ">=1.31.37,<1.32.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.6.0,<0.7.0"
@ -280,13 +280,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.31.32"
version = "1.31.37"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">= 3.7"
files = [
{file = "botocore-1.31.32-py3-none-any.whl", hash = "sha256:8992ac186988c4b4cc168e8e479e9472da1442b193c1bf7c9dcd1877ec62d23c"},
{file = "botocore-1.31.32.tar.gz", hash = "sha256:7a07d8dc8cc47bf23af39409ada81f388eb78233e1bb2cde0c415756da753664"},
{file = "botocore-1.31.37-py3-none-any.whl", hash = "sha256:72e10759be3dff39c5eeb29f85c11a227c369c946d044f2caf62c352d6a6fc06"},
{file = "botocore-1.31.37.tar.gz", hash = "sha256:5c92c8bc3c6b49950c95501b30f0ac551fd4952359b53a6fba243094028157de"},
]
[package.dependencies]
@ -662,6 +662,32 @@ ai = ["openai (>=0.27.6,<0.28.0)"]
docx = ["docx2txt (>=0.8,<0.9)"]
pdf = ["pypdf (>=3.3.0,<4.0.0)"]
[[package]]
name = "deepeval"
version = "0.10.12"
description = "Deep eval provides evaluation platform to accelerate development of LLMs and Agents"
optional = false
python-versions = "*"
files = [
{file = "deepeval-0.10.12-py3-none-any.whl", hash = "sha256:239eb720e8a205afab1ae2425e483177bd76cde658bdac98658a6559bdba4f3f"},
{file = "deepeval-0.10.12.tar.gz", hash = "sha256:80968d57a9da6c4fce6247d31ebf7fea228c76393e0d985804be68b722090732"},
]
[package.dependencies]
protobuf = "<=3.20.5"
pytest = "*"
requests = "*"
rich = "*"
sentence-transformers = "*"
tabulate = "*"
tqdm = "*"
transformers = "*"
typer = "*"
[package.extras]
bias = ["Dbias", "tensorflow"]
toxic = ["detoxify"]
[[package]]
name = "deprecated"
version = "1.2.14"
@ -681,13 +707,13 @@ dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"]
[[package]]
name = "dlt"
version = "0.3.12"
version = "0.3.14"
description = "DLT is an open-source python-native scalable data loading framework that does not require any devops efforts to run."
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "dlt-0.3.12-py3-none-any.whl", hash = "sha256:f9695a7fb98f5802e34f3f27d64e6ec1c0ccede48f26a1fdcd2db2c9280de9ac"},
{file = "dlt-0.3.12.tar.gz", hash = "sha256:1fb4a947b2215627c1ee5725f2af80c6c7fcab60e7c3a57d49ab84b495444117"},
{file = "dlt-0.3.14-py3-none-any.whl", hash = "sha256:b7672e153065796d0e7b0bc7eacfc48feff32a28e091eeca30f5a7180e42da2c"},
{file = "dlt-0.3.14.tar.gz", hash = "sha256:b398ee07a1b87a6ac93130fc8e143d77e99a30d1bf957468d0252f23f563c01e"},
]
[package.dependencies]
@ -732,6 +758,7 @@ gs = ["gcsfs (>=2022.4.0)"]
motherduck = ["duckdb (>=0.6.1,<0.9.0)", "pyarrow (>=8.0.0)"]
parquet = ["pyarrow (>=8.0.0)"]
postgres = ["psycopg2-binary (>=2.9.1)", "psycopg2cffi (>=2.9.0)"]
pydantic = ["pydantic (>=1.10,<2.0)"]
redshift = ["psycopg2-binary (>=2.9.1)", "psycopg2cffi (>=2.9.0)"]
s3 = ["boto3 (>=1.25)", "s3fs (>=2022.4.0)"]
snowflake = ["snowflake-connector-python[pandas] (>=2.9.0)"]
@ -881,6 +908,24 @@ files = [
[package.extras]
devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"]
[[package]]
name = "filelock"
version = "3.12.3"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.8"
files = [
{file = "filelock-3.12.3-py3-none-any.whl", hash = "sha256:f067e40ccc40f2b48395a80fcbd4728262fab54e232e090a4063ab804179efeb"},
{file = "filelock-3.12.3.tar.gz", hash = "sha256:0ecc1dd2ec4672a10c8550a8182f1bd0c0a5088470ecd5a125e45f49472fac3d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.7.1", markers = "python_version < \"3.11\""}
[package.extras]
docs = ["furo (>=2023.7.26)", "sphinx (>=7.1.2)", "sphinx-autodoc-typehints (>=1.24)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.3)", "diff-cover (>=7.7)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "pytest-timeout (>=2.1)"]
[[package]]
name = "frozenlist"
version = "1.4.0"
@ -1232,6 +1277,38 @@ cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "huggingface-hub"
version = "0.16.4"
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "huggingface_hub-0.16.4-py3-none-any.whl", hash = "sha256:0d3df29932f334fead024afc7cb4cc5149d955238b8b5e42dcf9740d6995a349"},
{file = "huggingface_hub-0.16.4.tar.gz", hash = "sha256:608c7d4f3d368b326d1747f91523dbd1f692871e8e2e7a4750314a2dd8b63e14"},
]
[package.dependencies]
filelock = "*"
fsspec = "*"
packaging = ">=20.9"
pyyaml = ">=5.1"
requests = "*"
tqdm = ">=4.42.1"
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "numpy", "pydantic", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "urllib3 (<2.0)"]
cli = ["InquirerPy (==0.3.4)"]
dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "numpy", "pydantic", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "urllib3 (<2.0)"]
fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"]
inference = ["aiohttp", "pydantic"]
quality = ["black (>=23.1,<24.0)", "mypy (==0.982)", "ruff (>=0.0.241)"]
tensorflow = ["graphviz", "pydot", "tensorflow"]
testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "numpy", "pydantic", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"]
torch = ["torch"]
typing = ["pydantic", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"]
[[package]]
name = "humanize"
version = "4.8.0"
@ -1414,13 +1491,13 @@ data = ["language-data (>=1.1,<2.0)"]
[[package]]
name = "langsmith"
version = "0.0.26"
version = "0.0.28"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langsmith-0.0.26-py3-none-any.whl", hash = "sha256:61c1d4582104d96edde04e1eea1dae347645b691c44489a5871341a2a1a2a1eb"},
{file = "langsmith-0.0.26.tar.gz", hash = "sha256:80a4ef1b663a24a460d25b9986ab2010c5d06b6061c65be473abafc0647d191a"},
{file = "langsmith-0.0.28-py3-none-any.whl", hash = "sha256:f398782f41526c74e141e68fa28b9020e0be4bde18a1d4a76b357c8272fb81bd"},
{file = "langsmith-0.0.28.tar.gz", hash = "sha256:34c15f9a8908be180001c58048b659ece6320d0bf8ffce4ca496a2428b35646e"},
]
[package.dependencies]
@ -1620,6 +1697,23 @@ files = [
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "mpmath"
version = "1.3.0"
description = "Python library for arbitrary-precision floating-point arithmetic"
optional = false
python-versions = "*"
files = [
{file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"},
{file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"},
]
[package.extras]
develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"]
docs = ["sphinx"]
gmpy = ["gmpy2 (>=2.1.0a4)"]
tests = ["pytest (>=4.6)"]
[[package]]
name = "multidict"
version = "6.0.4"
@ -1751,6 +1845,24 @@ files = [
{file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
]
[[package]]
name = "networkx"
version = "3.1"
description = "Python package for creating and manipulating graphs and networks"
optional = false
python-versions = ">=3.8"
files = [
{file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"},
{file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"},
]
[package.extras]
default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"]
developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"]
doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"]
test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "nltk"
version = "3.8.1"
@ -2053,6 +2165,75 @@ files = [
[package.dependencies]
ptyprocess = ">=0.5"
[[package]]
name = "pillow"
version = "10.0.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
{file = "Pillow-10.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1f62406a884ae75fb2f818694469519fb685cc7eaff05d3451a9ebe55c646891"},
{file = "Pillow-10.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d5db32e2a6ccbb3d34d87c87b432959e0db29755727afb37290e10f6e8e62614"},
{file = "Pillow-10.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edf4392b77bdc81f36e92d3a07a5cd072f90253197f4a52a55a8cec48a12483b"},
{file = "Pillow-10.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:520f2a520dc040512699f20fa1c363eed506e94248d71f85412b625026f6142c"},
{file = "Pillow-10.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:8c11160913e3dd06c8ffdb5f233a4f254cb449f4dfc0f8f4549eda9e542c93d1"},
{file = "Pillow-10.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a74ba0c356aaa3bb8e3eb79606a87669e7ec6444be352870623025d75a14a2bf"},
{file = "Pillow-10.0.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d5d0dae4cfd56969d23d94dc8e89fb6a217be461c69090768227beb8ed28c0a3"},
{file = "Pillow-10.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22c10cc517668d44b211717fd9775799ccec4124b9a7f7b3635fc5386e584992"},
{file = "Pillow-10.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:dffe31a7f47b603318c609f378ebcd57f1554a3a6a8effbc59c3c69f804296de"},
{file = "Pillow-10.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:9fb218c8a12e51d7ead2a7c9e101a04982237d4855716af2e9499306728fb485"},
{file = "Pillow-10.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d35e3c8d9b1268cbf5d3670285feb3528f6680420eafe35cccc686b73c1e330f"},
{file = "Pillow-10.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ed64f9ca2f0a95411e88a4efbd7a29e5ce2cea36072c53dd9d26d9c76f753b3"},
{file = "Pillow-10.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6eb5502f45a60a3f411c63187db83a3d3107887ad0d036c13ce836f8a36f1d"},
{file = "Pillow-10.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:c1fbe7621c167ecaa38ad29643d77a9ce7311583761abf7836e1510c580bf3dd"},
{file = "Pillow-10.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:cd25d2a9d2b36fcb318882481367956d2cf91329f6892fe5d385c346c0649629"},
{file = "Pillow-10.0.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3b08d4cc24f471b2c8ca24ec060abf4bebc6b144cb89cba638c720546b1cf538"},
{file = "Pillow-10.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d737a602fbd82afd892ca746392401b634e278cb65d55c4b7a8f48e9ef8d008d"},
{file = "Pillow-10.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:3a82c40d706d9aa9734289740ce26460a11aeec2d9c79b7af87bb35f0073c12f"},
{file = "Pillow-10.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:bc2ec7c7b5d66b8ec9ce9f720dbb5fa4bace0f545acd34870eff4a369b44bf37"},
{file = "Pillow-10.0.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:d80cf684b541685fccdd84c485b31ce73fc5c9b5d7523bf1394ce134a60c6883"},
{file = "Pillow-10.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76de421f9c326da8f43d690110f0e79fe3ad1e54be811545d7d91898b4c8493e"},
{file = "Pillow-10.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81ff539a12457809666fef6624684c008e00ff6bf455b4b89fd00a140eecd640"},
{file = "Pillow-10.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce543ed15570eedbb85df19b0a1a7314a9c8141a36ce089c0a894adbfccb4568"},
{file = "Pillow-10.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:685ac03cc4ed5ebc15ad5c23bc555d68a87777586d970c2c3e216619a5476223"},
{file = "Pillow-10.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d72e2ecc68a942e8cf9739619b7f408cc7b272b279b56b2c83c6123fcfa5cdff"},
{file = "Pillow-10.0.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d50b6aec14bc737742ca96e85d6d0a5f9bfbded018264b3b70ff9d8c33485551"},
{file = "Pillow-10.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:00e65f5e822decd501e374b0650146063fbb30a7264b4d2744bdd7b913e0cab5"},
{file = "Pillow-10.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:f31f9fdbfecb042d046f9d91270a0ba28368a723302786c0009ee9b9f1f60199"},
{file = "Pillow-10.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:1ce91b6ec08d866b14413d3f0bbdea7e24dfdc8e59f562bb77bc3fe60b6144ca"},
{file = "Pillow-10.0.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:349930d6e9c685c089284b013478d6f76e3a534e36ddfa912cde493f235372f3"},
{file = "Pillow-10.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3a684105f7c32488f7153905a4e3015a3b6c7182e106fe3c37fbb5ef3e6994c3"},
{file = "Pillow-10.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4f69b3700201b80bb82c3a97d5e9254084f6dd5fb5b16fc1a7b974260f89f43"},
{file = "Pillow-10.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f07ea8d2f827d7d2a49ecf1639ec02d75ffd1b88dcc5b3a61bbb37a8759ad8d"},
{file = "Pillow-10.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:040586f7d37b34547153fa383f7f9aed68b738992380ac911447bb78f2abe530"},
{file = "Pillow-10.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f88a0b92277de8e3ca715a0d79d68dc82807457dae3ab8699c758f07c20b3c51"},
{file = "Pillow-10.0.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c7cf14a27b0d6adfaebb3ae4153f1e516df54e47e42dcc073d7b3d76111a8d86"},
{file = "Pillow-10.0.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3400aae60685b06bb96f99a21e1ada7bc7a413d5f49bce739828ecd9391bb8f7"},
{file = "Pillow-10.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:dbc02381779d412145331789b40cc7b11fdf449e5d94f6bc0b080db0a56ea3f0"},
{file = "Pillow-10.0.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:9211e7ad69d7c9401cfc0e23d49b69ca65ddd898976d660a2fa5904e3d7a9baa"},
{file = "Pillow-10.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:faaf07ea35355b01a35cb442dd950d8f1bb5b040a7787791a535de13db15ed90"},
{file = "Pillow-10.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9f72a021fbb792ce98306ffb0c348b3c9cb967dce0f12a49aa4c3d3fdefa967"},
{file = "Pillow-10.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f7c16705f44e0504a3a2a14197c1f0b32a95731d251777dcb060aa83022cb2d"},
{file = "Pillow-10.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:76edb0a1fa2b4745fb0c99fb9fb98f8b180a1bbceb8be49b087e0b21867e77d3"},
{file = "Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:368ab3dfb5f49e312231b6f27b8820c823652b7cd29cfbd34090565a015e99ba"},
{file = "Pillow-10.0.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:608bfdee0d57cf297d32bcbb3c728dc1da0907519d1784962c5f0c68bb93e5a3"},
{file = "Pillow-10.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5c6e3df6bdd396749bafd45314871b3d0af81ff935b2d188385e970052091017"},
{file = "Pillow-10.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:7be600823e4c8631b74e4a0d38384c73f680e6105a7d3c6824fcf226c178c7e6"},
{file = "Pillow-10.0.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:92be919bbc9f7d09f7ae343c38f5bb21c973d2576c1d45600fce4b74bafa7ac0"},
{file = "Pillow-10.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8182b523b2289f7c415f589118228d30ac8c355baa2f3194ced084dac2dbba"},
{file = "Pillow-10.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:38250a349b6b390ee6047a62c086d3817ac69022c127f8a5dc058c31ccef17f3"},
{file = "Pillow-10.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:88af2003543cc40c80f6fca01411892ec52b11021b3dc22ec3bc9d5afd1c5334"},
{file = "Pillow-10.0.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c189af0545965fa8d3b9613cfdb0cd37f9d71349e0f7750e1fd704648d475ed2"},
{file = "Pillow-10.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce7b031a6fc11365970e6a5686d7ba8c63e4c1cf1ea143811acbb524295eabed"},
{file = "Pillow-10.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:db24668940f82321e746773a4bc617bfac06ec831e5c88b643f91f122a785684"},
{file = "Pillow-10.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:efe8c0681042536e0d06c11f48cebe759707c9e9abf880ee213541c5b46c5bf3"},
{file = "Pillow-10.0.0.tar.gz", hash = "sha256:9c82b5b3e043c7af0d95792d0d20ccf68f61a1fec6b3530e718b688422727396"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
[[package]]
name = "pinecone-client"
version = "2.2.2"
@ -2100,13 +2281,13 @@ pyee = "9.0.4"
[[package]]
name = "pluggy"
version = "1.2.0"
version = "1.3.0"
description = "plugin and hook calling mechanisms for python"
optional = false
python-versions = ">=3.7"
python-versions = ">=3.8"
files = [
{file = "pluggy-1.2.0-py3-none-any.whl", hash = "sha256:c2fd55a7d7a3863cba1a013e4e2414658b1d07b6bc57b3919e0c63c9abb99849"},
{file = "pluggy-1.2.0.tar.gz", hash = "sha256:d12f0c4b579b15f5e054301bb226ee85eeeba08ffec228092f8defbaa3a4c4b3"},
{file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"},
{file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"},
]
[package.extras]
@ -2165,6 +2346,37 @@ files = [
cymem = ">=2.0.2,<2.1.0"
murmurhash = ">=0.28.0,<1.1.0"
[[package]]
name = "protobuf"
version = "3.20.3"
description = "Protocol Buffers"
optional = false
python-versions = ">=3.7"
files = [
{file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"},
{file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"},
{file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"},
{file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"},
{file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"},
{file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"},
{file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"},
{file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"},
{file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"},
{file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"},
{file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"},
{file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"},
{file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"},
{file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"},
{file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"},
{file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"},
{file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"},
{file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"},
{file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"},
{file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"},
{file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"},
{file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"},
]
[[package]]
name = "ptyprocess"
version = "0.7.0"
@ -2281,13 +2493,13 @@ plugins = ["importlib-metadata"]
[[package]]
name = "pypdf"
version = "3.15.2"
version = "3.15.4"
description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files"
optional = false
python-versions = ">=3.6"
files = [
{file = "pypdf-3.15.2-py3-none-any.whl", hash = "sha256:f6e598292be34187287a609c72815c1502b3dc2c997b374ba0870ce79d2e975a"},
{file = "pypdf-3.15.2.tar.gz", hash = "sha256:cdf7d75ebb8901f3352cf9488c5f662c6de9c52e432c429d15cada67ba372fce"},
{file = "pypdf-3.15.4-py3-none-any.whl", hash = "sha256:791f0a52ddf390709f1f1b0c05c4d8cde13829b4f7cb91b4003b9bdd352bc944"},
{file = "pypdf-3.15.4.tar.gz", hash = "sha256:a2780ed01dc4da23ac1542209f58fd3d951d8dd37c3c0309d123cd2f2679fb03"},
]
[package.extras]
@ -2732,6 +2944,165 @@ botocore = ">=1.12.36,<2.0a.0"
[package.extras]
crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"]
[[package]]
name = "safetensors"
version = "0.3.3"
description = "Fast and Safe Tensor serialization"
optional = false
python-versions = "*"
files = [
{file = "safetensors-0.3.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:92e4d0c8b2836120fddd134474c5bda8963f322333941f8b9f643e5b24f041eb"},
{file = "safetensors-0.3.3-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3dcadb6153c42addc9c625a622ebde9293fabe1973f9ef31ba10fb42c16e8536"},
{file = "safetensors-0.3.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:08f26b61e1b0a14dc959aa9d568776bd038805f611caef1de04a80c468d4a7a4"},
{file = "safetensors-0.3.3-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:17f41344d9a075f2f21b289a49a62e98baff54b5754240ba896063bce31626bf"},
{file = "safetensors-0.3.3-cp310-cp310-macosx_13_0_arm64.whl", hash = "sha256:f1045f798e1a16a6ced98d6a42ec72936d367a2eec81dc5fade6ed54638cd7d2"},
{file = "safetensors-0.3.3-cp310-cp310-macosx_13_0_x86_64.whl", hash = "sha256:eaf0e4bc91da13f21ac846a39429eb3f3b7ed06295a32321fa3eb1a59b5c70f3"},
{file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25149180d4dc8ca48bac2ac3852a9424b466e36336a39659b35b21b2116f96fc"},
{file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9e943bf78c39de8865398a71818315e7d5d1af93c7b30d4da3fc852e62ad9bc"},
{file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cccfcac04a010354e87c7a2fe16a1ff004fc4f6e7ef8efc966ed30122ce00bc7"},
{file = "safetensors-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a07121f427e646a50d18c1be0fa1a2cbf6398624c31149cd7e6b35486d72189e"},
{file = "safetensors-0.3.3-cp310-cp310-win32.whl", hash = "sha256:a85e29cbfddfea86453cc0f4889b4bcc6b9c155be9a60e27be479a34e199e7ef"},
{file = "safetensors-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:e13adad4a3e591378f71068d14e92343e626cf698ff805f61cdb946e684a218e"},
{file = "safetensors-0.3.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:cbc3312f134baf07334dd517341a4b470b2931f090bd9284888acb7dfaf4606f"},
{file = "safetensors-0.3.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d15030af39d5d30c22bcbc6d180c65405b7ea4c05b7bab14a570eac7d7d43722"},
{file = "safetensors-0.3.3-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:f84a74cbe9859b28e3d6d7715ac1dd3097bebf8d772694098f6d42435245860c"},
{file = "safetensors-0.3.3-cp311-cp311-macosx_13_0_arm64.whl", hash = "sha256:10d637423d98ab2e6a4ad96abf4534eb26fcaf8ca3115623e64c00759374e90d"},
{file = "safetensors-0.3.3-cp311-cp311-macosx_13_0_universal2.whl", hash = "sha256:3b46f5de8b44084aff2e480874c550c399c730c84b2e8ad1bddb062c94aa14e9"},
{file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76da691a82dfaf752854fa6d17c8eba0c8466370c5ad8cf1bfdf832d3c7ee17"},
{file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4e342fd54e66aa9512dd13e410f791e47aa4feeb5f4c9a20882c72f3d272f29"},
{file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:178fd30b5dc73bce14a39187d948cedd0e5698e2f055b7ea16b5a96c9b17438e"},
{file = "safetensors-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e8fdf7407dba44587ed5e79d5de3533d242648e1f2041760b21474bd5ea5c8c"},
{file = "safetensors-0.3.3-cp311-cp311-win32.whl", hash = "sha256:7d3b744cee8d7a46ffa68db1a2ff1a1a432488e3f7a5a97856fe69e22139d50c"},
{file = "safetensors-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:f579877d30feec9b6ba409d05fa174633a4fc095675a4a82971d831a8bb60b97"},
{file = "safetensors-0.3.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:2fff5b19a1b462c17322998b2f4b8bce43c16fe208968174d2f3a1446284ceed"},
{file = "safetensors-0.3.3-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:41adb1d39e8aad04b16879e3e0cbcb849315999fad73bc992091a01e379cb058"},
{file = "safetensors-0.3.3-cp37-cp37m-macosx_12_0_x86_64.whl", hash = "sha256:0f2b404250b3b877b11d34afcc30d80e7035714a1116a3df56acaca6b6c00096"},
{file = "safetensors-0.3.3-cp37-cp37m-macosx_13_0_x86_64.whl", hash = "sha256:b43956ef20e9f4f2e648818a9e7b3499edd6b753a0f5526d4f6a6826fbee8446"},
{file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d61a99b34169981f088ccfbb2c91170843efc869a0a0532f422db7211bf4f474"},
{file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0008aab36cd20e9a051a68563c6f80d40f238c2611811d7faa5a18bf3fd3984"},
{file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:93d54166072b143084fdcd214a080a088050c1bb1651016b55942701b31334e4"},
{file = "safetensors-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c32ee08f61cea56a5d62bbf94af95df6040c8ab574afffaeb7b44ae5da1e9e3"},
{file = "safetensors-0.3.3-cp37-cp37m-win32.whl", hash = "sha256:351600f367badd59f7bfe86d317bb768dd8c59c1561c6fac43cafbd9c1af7827"},
{file = "safetensors-0.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:034717e297849dae1af0a7027a14b8647bd2e272c24106dced64d83e10d468d1"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8530399666748634bc0b301a6a5523756931b0c2680d188e743d16304afe917a"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:9d741c1f1621e489ba10aa3d135b54202684f6e205df52e219d5eecd673a80c9"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:0c345fd85b4d2093a5109596ff4cd9dfc2e84992e881b4857fbc4a93a3b89ddb"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:69ccee8d05f55cdf76f7e6c87d2bdfb648c16778ef8acfd2ecc495e273e9233e"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_13_0_arm64.whl", hash = "sha256:c08a9a4b7a4ca389232fa8d097aebc20bbd4f61e477abc7065b5c18b8202dede"},
{file = "safetensors-0.3.3-cp38-cp38-macosx_13_0_x86_64.whl", hash = "sha256:a002868d2e3f49bbe81bee2655a411c24fa1f8e68b703dec6629cb989d6ae42e"},
{file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3bd2704cb41faa44d3ec23e8b97330346da0395aec87f8eaf9c9e2c086cdbf13"},
{file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b2951bf3f0ad63df5e6a95263652bd6c194a6eb36fd4f2d29421cd63424c883"},
{file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07114cec116253ca2e7230fdea30acf76828f21614afd596d7b5438a2f719bd8"},
{file = "safetensors-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ab43aeeb9eadbb6b460df3568a662e6f1911ecc39387f8752afcb6a7d96c087"},
{file = "safetensors-0.3.3-cp38-cp38-win32.whl", hash = "sha256:f2f59fce31dd3429daca7269a6b06f65e6547a0c248f5116976c3f1e9b73f251"},
{file = "safetensors-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:c31ca0d8610f57799925bf08616856b39518ab772c65093ef1516762e796fde4"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:59a596b3225c96d59af412385981f17dd95314e3fffdf359c7e3f5bb97730a19"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:82a16e92210a6221edd75ab17acdd468dd958ef5023d9c6c1289606cc30d1479"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:98a929e763a581f516373ef31983ed1257d2d0da912a8e05d5cd12e9e441c93a"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:12b83f1986cd16ea0454c636c37b11e819d60dd952c26978310a0835133480b7"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_13_0_arm64.whl", hash = "sha256:f439175c827c2f1bbd54df42789c5204a10983a30bc4242bc7deaf854a24f3f0"},
{file = "safetensors-0.3.3-cp39-cp39-macosx_13_0_x86_64.whl", hash = "sha256:0085be33b8cbcb13079b3a8e131656e05b0bc5e6970530d4c24150f7afd76d70"},
{file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e3ec70c87b1e910769034206ad5efc051069b105aac1687f6edcd02526767f4"},
{file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f490132383e5e490e710608f4acffcb98ed37f91b885c7217d3f9f10aaff9048"},
{file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79d1b6c7ed5596baf79c80fbce5198c3cdcc521ae6a157699f427aba1a90082d"},
{file = "safetensors-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad3cc8006e7a86ee7c88bd2813ec59cd7cc75b03e6fa4af89b9c7b235b438d68"},
{file = "safetensors-0.3.3-cp39-cp39-win32.whl", hash = "sha256:ab29f54c6b8c301ca05fa014728996bd83aac6e21528f893aaf8945c71f42b6d"},
{file = "safetensors-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0fa82004eae1a71e2aa29843ef99de9350e459a0fc2f65fc6ee0da9690933d2d"},
{file = "safetensors-0.3.3.tar.gz", hash = "sha256:edb7072d788c4f929d0f5735d3a2fb51e5a27f833587828583b7f5747af1a2b8"},
]
[package.extras]
all = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (==2.11.0)", "torch (>=1.10)"]
dev = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (==2.11.0)", "torch (>=1.10)"]
jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)"]
numpy = ["numpy (>=1.21.6)"]
paddlepaddle = ["numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)"]
pinned-tf = ["tensorflow (==2.11.0)"]
quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"]
tensorflow = ["numpy (>=1.21.6)", "tensorflow (>=2.11.0)"]
testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "numpy (>=1.21.6)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)"]
torch = ["numpy (>=1.21.6)", "torch (>=1.10)"]
[[package]]
name = "scikit-learn"
version = "1.3.0"
description = "A set of python modules for machine learning and data mining"
optional = false
python-versions = ">=3.8"
files = [
{file = "scikit-learn-1.3.0.tar.gz", hash = "sha256:8be549886f5eda46436b6e555b0e4873b4f10aa21c07df45c4bc1735afbccd7a"},
{file = "scikit_learn-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:981287869e576d42c682cf7ca96af0c6ac544ed9316328fd0d9292795c742cf5"},
{file = "scikit_learn-1.3.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:436aaaae2c916ad16631142488e4c82f4296af2404f480e031d866863425d2a2"},
{file = "scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7e28d8fa47a0b30ae1bd7a079519dd852764e31708a7804da6cb6f8b36e3630"},
{file = "scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80c08834a473d08a204d966982a62e11c976228d306a2648c575e3ead12111"},
{file = "scikit_learn-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:552fd1b6ee22900cf1780d7386a554bb96949e9a359999177cf30211e6b20df6"},
{file = "scikit_learn-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:79970a6d759eb00a62266a31e2637d07d2d28446fca8079cf9afa7c07b0427f8"},
{file = "scikit_learn-1.3.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:850a00b559e636b23901aabbe79b73dc604b4e4248ba9e2d6e72f95063765603"},
{file = "scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee04835fb016e8062ee9fe9074aef9b82e430504e420bff51e3e5fffe72750ca"},
{file = "scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d953531f5d9f00c90c34fa3b7d7cfb43ecff4c605dac9e4255a20b114a27369"},
{file = "scikit_learn-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:151ac2bf65ccf363664a689b8beafc9e6aae36263db114b4ca06fbbbf827444a"},
{file = "scikit_learn-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6a885a9edc9c0a341cab27ec4f8a6c58b35f3d449c9d2503a6fd23e06bbd4f6a"},
{file = "scikit_learn-1.3.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:9877af9c6d1b15486e18a94101b742e9d0d2f343d35a634e337411ddb57783f3"},
{file = "scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c470f53cea065ff3d588050955c492793bb50c19a92923490d18fcb637f6383a"},
{file = "scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd6e2d7389542eae01077a1ee0318c4fec20c66c957f45c7aac0c6eb0fe3c612"},
{file = "scikit_learn-1.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:3a11936adbc379a6061ea32fa03338d4ca7248d86dd507c81e13af428a5bc1db"},
{file = "scikit_learn-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:998d38fcec96584deee1e79cd127469b3ad6fefd1ea6c2dfc54e8db367eb396b"},
{file = "scikit_learn-1.3.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:ded35e810438a527e17623ac6deae3b360134345b7c598175ab7741720d7ffa7"},
{file = "scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e8102d5036e28d08ab47166b48c8d5e5810704daecf3a476a4282d562be9a28"},
{file = "scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7617164951c422747e7c32be4afa15d75ad8044f42e7d70d3e2e0429a50e6718"},
{file = "scikit_learn-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:1d54fb9e6038284548072df22fd34777e434153f7ffac72c8596f2d6987110dd"},
]
[package.dependencies]
joblib = ">=1.1.1"
numpy = ">=1.17.3"
scipy = ">=1.5.0"
threadpoolctl = ">=2.0.0"
[package.extras]
benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"]
docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"]
examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"]
tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"]
[[package]]
name = "scipy"
version = "1.9.3"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
{file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
{file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
{file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
{file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
{file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
{file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
{file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
{file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
{file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
{file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
{file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
{file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
]
[package.dependencies]
numpy = ">=1.18.5,<1.26.0"
[package.extras]
dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"]
doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"]
test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "selenium"
version = "4.11.2"
@ -2760,6 +3131,82 @@ files = [
{file = "semver-3.0.1.tar.gz", hash = "sha256:9ec78c5447883c67b97f98c3b6212796708191d22e4ad30f4570f840171cbce1"},
]
[[package]]
name = "sentence-transformers"
version = "2.2.2"
description = "Multilingual text embeddings"
optional = false
python-versions = ">=3.6.0"
files = [
{file = "sentence-transformers-2.2.2.tar.gz", hash = "sha256:dbc60163b27de21076c9a30d24b5b7b6fa05141d68cf2553fa9a77bf79a29136"},
]
[package.dependencies]
huggingface-hub = ">=0.4.0"
nltk = "*"
numpy = "*"
scikit-learn = "*"
scipy = "*"
sentencepiece = "*"
torch = ">=1.6.0"
torchvision = "*"
tqdm = "*"
transformers = ">=4.6.0,<5.0.0"
[[package]]
name = "sentencepiece"
version = "0.1.99"
description = "SentencePiece python wrapper"
optional = false
python-versions = "*"
files = [
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"},
{file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"},
{file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"},
{file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"},
{file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"},
{file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"},
{file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"},
{file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"},
{file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"},
{file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"},
{file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"},
{file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"},
]
[[package]]
name = "setuptools"
version = "68.1.2"
@ -3190,6 +3637,34 @@ anyio = ">=3.4.0,<5"
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "sympy"
version = "1.12"
description = "Computer algebra system (CAS) in Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"},
{file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"},
]
[package.dependencies]
mpmath = ">=0.19"
[[package]]
name = "tabulate"
version = "0.9.0"
description = "Pretty-print tabular data"
optional = false
python-versions = ">=3.7"
files = [
{file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"},
{file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"},
]
[package.extras]
widechars = ["wcwidth"]
[[package]]
name = "tenacity"
version = "8.2.3"
@ -3290,6 +3765,17 @@ mxnet = ["mxnet (>=1.5.1,<1.6.0)"]
tensorflow = ["tensorflow (>=2.0.0,<2.6.0)"]
torch = ["torch (>=1.6.0)"]
[[package]]
name = "threadpoolctl"
version = "3.2.0"
description = "threadpoolctl"
optional = false
python-versions = ">=3.8"
files = [
{file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"},
{file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"},
]
[[package]]
name = "tiktoken"
version = "0.4.0"
@ -3335,6 +3821,60 @@ requests = ">=2.26.0"
[package.extras]
blobfile = ["blobfile (>=2)"]
[[package]]
name = "tokenizers"
version = "0.13.3"
description = "Fast and Customizable Tokenizers"
optional = false
python-versions = "*"
files = [
{file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"},
{file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"},
{file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"},
{file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"},
{file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"},
{file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"},
{file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"},
{file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"},
{file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"},
{file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"},
{file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"},
{file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"},
{file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"},
{file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"},
]
[package.extras]
dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"]
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
[[package]]
name = "tomli"
version = "2.0.1"
@ -3357,6 +3897,83 @@ files = [
{file = "tomlkit-0.12.1.tar.gz", hash = "sha256:38e1ff8edb991273ec9f6181244a6a391ac30e9f5098e7535640ea6be97a7c86"},
]
[[package]]
name = "torch"
version = "2.0.1"
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "torch-2.0.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:8ced00b3ba471856b993822508f77c98f48a458623596a4c43136158781e306a"},
{file = "torch-2.0.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:359bfaad94d1cda02ab775dc1cc386d585712329bb47b8741607ef6ef4950747"},
{file = "torch-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:7c84e44d9002182edd859f3400deaa7410f5ec948a519cc7ef512c2f9b34d2c4"},
{file = "torch-2.0.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:567f84d657edc5582d716900543e6e62353dbe275e61cdc36eda4929e46df9e7"},
{file = "torch-2.0.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:787b5a78aa7917465e9b96399b883920c88a08f4eb63b5a5d2d1a16e27d2f89b"},
{file = "torch-2.0.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e617b1d0abaf6ced02dbb9486803abfef0d581609b09641b34fa315c9c40766d"},
{file = "torch-2.0.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:b6019b1de4978e96daa21d6a3ebb41e88a0b474898fe251fd96189587408873e"},
{file = "torch-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:dbd68cbd1cd9da32fe5d294dd3411509b3d841baecb780b38b3b7b06c7754434"},
{file = "torch-2.0.1-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:ef654427d91600129864644e35deea761fb1fe131710180b952a6f2e2207075e"},
{file = "torch-2.0.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:25aa43ca80dcdf32f13da04c503ec7afdf8e77e3a0183dd85cd3e53b2842e527"},
{file = "torch-2.0.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5ef3ea3d25441d3957348f7e99c7824d33798258a2bf5f0f0277cbcadad2e20d"},
{file = "torch-2.0.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0882243755ff28895e8e6dc6bc26ebcf5aa0911ed81b2a12f241fc4b09075b13"},
{file = "torch-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:f66aa6b9580a22b04d0af54fcd042f52406a8479e2b6a550e3d9f95963e168c8"},
{file = "torch-2.0.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:1adb60d369f2650cac8e9a95b1d5758e25d526a34808f7448d0bd599e4ae9072"},
{file = "torch-2.0.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:1bcffc16b89e296826b33b98db5166f990e3b72654a2b90673e817b16c50e32b"},
{file = "torch-2.0.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:e10e1597f2175365285db1b24019eb6f04d53dcd626c735fc502f1e8b6be9875"},
{file = "torch-2.0.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:423e0ae257b756bb45a4b49072046772d1ad0c592265c5080070e0767da4e490"},
{file = "torch-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:8742bdc62946c93f75ff92da00e3803216c6cce9b132fbca69664ca38cfb3e18"},
{file = "torch-2.0.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:c62df99352bd6ee5a5a8d1832452110435d178b5164de450831a3a8cc14dc680"},
{file = "torch-2.0.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:671a2565e3f63b8fe8e42ae3e36ad249fe5e567435ea27b94edaa672a7d0c416"},
]
[package.dependencies]
filelock = "*"
jinja2 = "*"
networkx = "*"
sympy = "*"
typing-extensions = "*"
[package.extras]
opt-einsum = ["opt-einsum (>=3.3)"]
[[package]]
name = "torchvision"
version = "0.15.2"
description = "image and video datasets and models for torch deep learning"
optional = false
python-versions = ">=3.8"
files = [
{file = "torchvision-0.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7754088774e810c5672b142a45dcf20b1bd986a5a7da90f8660c43dc43fb850c"},
{file = "torchvision-0.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:37eb138e13f6212537a3009ac218695483a635c404b6cc1d8e0d0d978026a86d"},
{file = "torchvision-0.15.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:54143f7cc0797d199b98a53b7d21c3f97615762d4dd17ad45a41c7e80d880e73"},
{file = "torchvision-0.15.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:1eefebf5fbd01a95fe8f003d623d941601c94b5cec547b420da89cb369d9cf96"},
{file = "torchvision-0.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:96fae30c5ca8423f4b9790df0f0d929748e32718d88709b7b567d2f630c042e3"},
{file = "torchvision-0.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5f35f6bd5bcc4568e6522e4137fa60fcc72f4fa3e615321c26cd87e855acd398"},
{file = "torchvision-0.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:757505a0ab2be7096cb9d2bf4723202c971cceddb72c7952a7e877f773de0f8a"},
{file = "torchvision-0.15.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:012ad25cfd9019ff9b0714a168727e3845029be1af82296ff1e1482931fa4b80"},
{file = "torchvision-0.15.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:b02a7ffeaa61448737f39a4210b8ee60234bda0515a0c0d8562f884454105b0f"},
{file = "torchvision-0.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:10be76ceded48329d0a0355ac33da131ee3993ff6c125e4a02ab34b5baa2472c"},
{file = "torchvision-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8f12415b686dba884fb086f53ac803f692be5a5cdd8a758f50812b30fffea2e4"},
{file = "torchvision-0.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:31211c01f8b8ec33b8a638327b5463212e79a03e43c895f88049f97af1bd12fd"},
{file = "torchvision-0.15.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c55f9889e436f14b4f84a9c00ebad0d31f5b4626f10cf8018e6c676f92a6d199"},
{file = "torchvision-0.15.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:9a192f2aa979438f23c20e883980b23d13268ab9f819498774a6d2eb021802c2"},
{file = "torchvision-0.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:c07071bc8d02aa8fcdfe139ab6a1ef57d3b64c9e30e84d12d45c9f4d89fb6536"},
{file = "torchvision-0.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4790260fcf478a41c7ecc60a6d5200a88159fdd8d756e9f29f0f8c59c4a67a68"},
{file = "torchvision-0.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:987ab62225b4151a11e53fd06150c5258ced24ac9d7c547e0e4ab6fbca92a5ce"},
{file = "torchvision-0.15.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:63df26673e66cba3f17e07c327a8cafa3cce98265dbc3da329f1951d45966838"},
{file = "torchvision-0.15.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:b85f98d4cc2f72452f6792ab4463a3541bc5678a8cdd3da0e139ba2fe8b56d42"},
{file = "torchvision-0.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:07c462524cc1bba5190c16a9d47eac1fca024d60595a310f23c00b4ffff18b30"},
]
[package.dependencies]
numpy = "*"
pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0"
requests = "*"
torch = "2.0.1"
[package.extras]
scipy = ["scipy"]
[[package]]
name = "tqdm"
version = "4.66.1"
@ -3377,6 +3994,75 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "transformers"
version = "4.32.1"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "transformers-4.32.1-py3-none-any.whl", hash = "sha256:b930d3dbd907a3f300cf49e54d63a56f8a0ab16b01a2c2a61ecff37c6de1da08"},
{file = "transformers-4.32.1.tar.gz", hash = "sha256:1edc8ae1de357d97c3d36b04412aa63d55e6fc0c4b39b419a7d380ed947d2252"},
]
[package.dependencies]
filelock = "*"
huggingface-hub = ">=0.15.1,<1.0"
numpy = ">=1.17"
packaging = ">=20.0"
pyyaml = ">=5.1"
regex = "!=2019.12.17"
requests = "*"
safetensors = ">=0.3.1"
tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14"
tqdm = ">=4.27"
[package.extras]
accelerate = ["accelerate (>=0.20.3)"]
agents = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.9,!=1.12.0)"]
all = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"]
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
codecarbon = ["codecarbon (==1.2.0)"]
deepspeed = ["accelerate (>=0.20.3)", "deepspeed (>=0.9.3)"]
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"]
dev = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"]
dev-torch = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
docs = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"]
docs-specific = ["hf-doc-builder"]
fairscale = ["fairscale (>0.3)"]
flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"]
flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
ftfy = ["ftfy"]
integrations = ["optuna", "ray[tune]", "sigopt"]
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
modelcreation = ["cookiecutter (==1.7.3)"]
natten = ["natten (>=0.14.6)"]
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
optuna = ["optuna"]
quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"]
ray = ["ray[tune]"]
retrieval = ["datasets (!=2.5.0)", "faiss-cpu"]
sagemaker = ["sagemaker (>=2.31.0)"]
sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"]
serving = ["fastapi", "pydantic (<2)", "starlette", "uvicorn"]
sigopt = ["sigopt"]
sklearn = ["scikit-learn"]
speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "timeout-decorator"]
tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx"]
tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.14)", "tensorflow-text (<2.14)", "tf2onnx"]
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
timm = ["timm"]
tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
torch = ["accelerate (>=0.20.3)", "torch (>=1.9,!=1.12.0)"]
torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
torch-vision = ["Pillow (<10.0.0)", "torchvision"]
torchhub = ["filelock", "huggingface-hub (>=0.15.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "tqdm (>=4.27)"]
video = ["av (==9.2.0)", "decord (==0.6.0)"]
vision = ["Pillow (<10.0.0)"]
[[package]]
name = "trio"
version = "0.22.2"
@ -3546,13 +4232,13 @@ colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python
[[package]]
name = "weaviate-client"
version = "3.23.0"
version = "3.23.2"
description = "A python native Weaviate client"
optional = false
python-versions = ">=3.8"
files = [
{file = "weaviate-client-3.23.0.tar.gz", hash = "sha256:3ffd7f1460c9e32755d84d4f5fc63dfc0bd990dbe2c3dc20d5c68119d467680e"},
{file = "weaviate_client-3.23.0-py3-none-any.whl", hash = "sha256:3d3bb75c1d96b2b71e213c5eb885ae3e3f42e4304955383c467d100187d9ff8e"},
{file = "weaviate-client-3.23.2.tar.gz", hash = "sha256:1c8c94df032dd2fa5a4ea615fc69ccb983ffad5cc02974f78c793839e61ac150"},
{file = "weaviate_client-3.23.2-py3-none-any.whl", hash = "sha256:88ffc38cca07806d64726cc74bc194c7da50b222aa4e2cd129f4c1f5e53e9b61"},
]
[package.dependencies]
@ -3780,4 +4466,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "5629225437c5aec01f9f862d46d6d1e68abde4c42a0c1ad709df875883171991"
content-hash = "761b58204631452d77e13bbc2d61034704e8e109619db4addd26ec159b9bb176"

View file

@ -40,6 +40,7 @@ weaviate-client = "^3.22.1"
python-multipart = "^0.0.6"
deep-translator = "^1.11.4"
humanize = "^4.8.0"
deepeval = "^0.10.12"

View file

@ -0,0 +1,38 @@
{
"q1": {
"question": "What does Buck learn from being harnessed and made to work with François?",
"answer": "Buck learns several important lessons from being harnessed and made to work with François. First, he learns the lesson of obedience and the consequences of disobedience. He quickly realizes that François demands instant obedience and uses his whip to enforce it, and that he must listen and follow commands promptly to avoid the whip [16]. Second, Buck learns the value of hard work and the satisfaction it brings. Despite the new and strange nature of the work, Buck learns quickly and makes remarkable progress, earning respect from François [16][19]. Furthermore, Buck learns important skills related to pulling a sled, such as stopping at command ('ho'), going ahead ('mush'), swinging wide on bends, and staying clear of the wheeler when the sled goes downhill. He also learns the dynamics of working in a team and how to respond to the lead dog's instructions [16][19]."
},
"q2": {
"question": "How many chapters does the document have",
"answer": "The document has a total of 7 chapters. The chapter titles are: Into the Primitive [Chapter 1012], The Law of Club and Fang [Chapter 1013], The Dominant Primordial Beast [Chapter 1014], Who Has Won to Mastership [Chapter 1015], The Toil of Trace and Trail [Chapter 1016], For the Love of a Man [Chapter 1017], The Sounding of the Call [Chapter 1018]."
},
"q3": {
"question": "Who kidnapped Buck?",
"answer": "Buck was kidnapped by one of the gardener's helpers named Manuel, who sold him to strangers for a profit."
},
"q4": {
"question": "What is the name of the gardener's helper who kidnapped Buck?",
"answer": "The name of the gardener's helper who kidnapped Buck is Manuel."
},
"q5": {
"question": "Where was Buck taken after being kidnapped?",
"answer": "After being kidnapped, Buck was taken by Manuel through the orchard to a little flag station known as College Park [7a]. Eventually, Buck was thrown into a baggage car of a train, where he remained unconscious until he woke up and watched the man in the red sweater [8] [11a]. The specific location Buck was taken to after being kidnapped is not explicitly mentioned in the given texts."
},
"q6": {
"question": "What is the law of club and fang?",
"answer": "The law of club and fang refers to the harsh and primal rules of survival in the wild, where physical strength and aggression determine dominance and power. The club represents the power wielded by humans over animals. Buck realizes that in order to survive in this new environment, he must adapt and submit to this law. The law of club and fang signifies the brutal and primitive nature of life in the wild."
},
"q7": {
"question": "What is the mother of Buck?",
"answer": "The mother of Buck, the dog in the story 'The Call of the Wild' by Jack London, is a Scottish shepherd dog named Shep."
},
"q8": {
"question": "How did Buck feel after being kidnapped?",
"answer": "After being kidnapped, Buck felt anger and resentment towards his captors [7]. He was initially cooperative but grew angry as he was mistreated and felt violated and vilely treated during his transportation [8]."
},
"q9": {
"question": "Was Buck beaten in captivity?",
"answer": "Yes, Buck was beaten while in captivity. In document snippet [11], Buck rushed at the man who had been tormenting him, and the man delivered a blow that rendered Buck senseless."
}
}

View file

@ -74,3 +74,5 @@ class TestMemory(unittest.TestCase):
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,119 @@
import os
import openai
from deepeval.metrics.factual_consistency import assert_factual_consistency
import dotenv
dotenv.load_dotenv()
from level_2.level_2_pdf_vectorstore__dlt_contracts import Memory
openai.api_key = os.getenv("OPENAI_API_KEY", "")
from deepeval.metrics.overall_score import assert_overall_score
import json
from deepeval.metrics.overall_score import OverallScoreMetric
# Write a sample ChatGPT function
async def main():
async def generate_context(query: str='bla', context:str=None):
memory = Memory(user_id="TestUser")
await memory.async_init()
memory_loaded = await memory._fetch_semantic_memory(observation=query, params=None)
if memory_loaded:
return memory_loaded["data"]["Get"]["SEMANTICMEMORY"][0]["text"]
else:
params = {
"version": "1.0",
"agreement_id": "AG123456",
"privacy_policy": "https://example.com/privacy",
"terms_of_service": "https://example.com/terms",
"format": "json",
"schema_version": "1.1",
"checksum": "a1b2c3d4e5f6",
"owner": "John Doe",
"license": "MIT",
"validity_start": "2023-08-01",
"validity_end": "2024-07-31",
}
loader_settings = {
"format": "PDF",
"source": "url",
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf"
}
load_jack_london = await memory._add_semantic_memory(observation = query, loader_settings=loader_settings, params=params)
memory_loaded = await memory._fetch_semantic_memory(observation=query, params=None)
return memory_loaded["data"]["Get"]["SEMANTICMEMORY"][0]["text"]
# return load_jack_london
#
# modulator = {"relevance": 0.0, "saliency": 0.0, "frequency": 0.0}
# # #
# run_main_buffer = await memory._create_buffer_context(
# user_input="I want to know how does Buck adapt to life in the wild and then have that info translated to german ",
# params=params,
# attention_modulators=modulator,
# )
async def generate_chatgpt_output(query:str, context:str=None):
if context is None:
context = await generate_context(query=query)
# print(context)
else:
pass
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "assistant", "content": f"{context}"},
{"role": "user", "content": query}
]
)
llm_output = response.choices[0].message.content
# print(llm_output)
return llm_output
with open('base_test_set.json', 'r') as f:
data = json.load(f)
#
async def test_overall_score(query:str, output:str=None, expected_output:str=None, context:str=None, context_type:str=None):
if context_type == "gpt_search":
context = ""
elif context_type == "base_memory_context":
context = await generate_context(query=query)
output = context
elif context_type == "hybrid_search":
context = await generate_context(query=query)
output = await generate_chatgpt_output(query)
elif context_type == "memory_search":
pass
metric = OverallScoreMetric()
score = metric.measure(
query=query,
output=output,
expected_output=expected_output,
context=context
)
print('here is the score', score)
return score
# await generate_chatgpt_output(query=" When was call of the wild written?")
scores = {}
for key, item in data.items():
question = item['question']
expected_ans = item['answer']
values = await test_overall_score(query=question, expected_output=expected_ans, context_type="hybrid_search")
scores[key] = values
print(scores)
if __name__ == "__main__":
import asyncio
asyncio.run(main())