Merge branch 'dev' into multi-tenancy

This commit is contained in:
Igor Ilic 2025-11-11 12:51:19 +01:00 committed by GitHub
commit 76bf99b8a6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 28 additions and 18 deletions

View file

@ -2,7 +2,7 @@ name: Weighted Edges Tests
on:
push:
branches: [ main, weighted_edges ]
branches: [ main, dev, weighted_edges ]
paths:
- 'cognee/modules/graph/utils/get_graph_from_model.py'
- 'cognee/infrastructure/engine/models/Edge.py'
@ -10,7 +10,7 @@ on:
- 'examples/python/weighted_edges_example.py'
- '.github/workflows/weighted_edges_tests.yml'
pull_request:
branches: [ main ]
branches: [ main, dev ]
paths:
- 'cognee/modules/graph/utils/get_graph_from_model.py'
- 'cognee/infrastructure/engine/models/Edge.py'
@ -32,7 +32,7 @@ jobs:
env:
LLM_PROVIDER: openai
LLM_MODEL: gpt-5-mini
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
steps:
- name: Check out repository
@ -67,14 +67,13 @@ jobs:
env:
LLM_PROVIDER: openai
LLM_MODEL: gpt-5-mini
LLM_ENDPOINT: https://api.openai.com/v1/
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
LLM_ENDPOINT: https://api.openai.com/v1
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
LLM_API_VERSION: "2024-02-01"
EMBEDDING_PROVIDER: openai
EMBEDDING_MODEL: text-embedding-3-small
EMBEDDING_ENDPOINT: https://api.openai.com/v1/
EMBEDDING_API_KEY: ${{ secrets.LLM_API_KEY }}
EMBEDDING_API_VERSION: "2024-02-01"
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
steps:
- name: Check out repository
uses: actions/checkout@v4
@ -108,14 +107,14 @@ jobs:
env:
LLM_PROVIDER: openai
LLM_MODEL: gpt-5-mini
LLM_ENDPOINT: https://api.openai.com/v1/
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
LLM_ENDPOINT: https://api.openai.com/v1
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
LLM_API_VERSION: "2024-02-01"
EMBEDDING_PROVIDER: openai
EMBEDDING_MODEL: text-embedding-3-small
EMBEDDING_ENDPOINT: https://api.openai.com/v1/
EMBEDDING_API_KEY: ${{ secrets.LLM_API_KEY }}
EMBEDDING_API_VERSION: "2024-02-01"
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
steps:
- name: Check out repository
uses: actions/checkout@v4

View file

@ -416,6 +416,15 @@ class NeptuneAnalyticsAdapter(NeptuneGraphDB, VectorDBInterface):
self._client.query(f"MATCH (n :{self._VECTOR_NODE_LABEL}) DETACH DELETE n")
pass
async def is_empty(self) -> bool:
query = """
MATCH (n)
RETURN true
LIMIT 1;
"""
query_result = await self._client.query(query)
return len(query_result) == 0
@staticmethod
def _get_scored_result(
item: dict, with_vector: bool = False, with_score: bool = False

View file

@ -1,4 +1,6 @@
from typing import Any, Optional
from fastapi.encoders import jsonable_encoder
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.modules.retrieval.base_retriever import BaseRetriever
from cognee.modules.retrieval.utils.completion import generate_completion
@ -50,7 +52,7 @@ class CypherSearchRetriever(BaseRetriever):
logger.warning("Search attempt on an empty knowledge graph")
return []
result = await graph_engine.query(query)
result = jsonable_encoder(await graph_engine.query(query))
except Exception as e:
logger.error("Failed to execture cypher search retrieval: %s", str(e))
raise CypherSearchError() from e