feat: add create-memory and remember API endpoints

Add possibility to create a new Vector memory and store text data points using openai embeddings.
This commit is contained in:
Boris Arzentar 2024-02-25 23:56:50 +01:00
parent a6b9c8a5bf
commit 769d6b5080
40 changed files with 2685 additions and 4926 deletions

1
.gitignore vendored
View file

@ -163,3 +163,4 @@ cython_debug/
#.idea/
.vscode/
database/data/

638
.pylintrc Normal file
View file

@ -0,0 +1,638 @@
[MAIN]
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
# Clear in-memory caches upon conclusion of linting. Useful if running pylint
# in a server-like mode.
clear-cache-post-run=no
# Load and enable all available extensions. Use --list-extensions to see a list
# all available extensions.
#enable-all-extensions=
# In error mode, messages with a category besides ERROR or FATAL are
# suppressed, and no reports are done by default. Error mode is compatible with
# disabling specific errors.
#errors-only=
# Always return a 0 (non-error) status code, even if lint errors are found.
# This is primarily useful in continuous integration scripts.
#exit-zero=
# A comma-separated list of package or module names from where C extensions may
# be loaded. Extensions are loading into the active Python interpreter and may
# run arbitrary code.
extension-pkg-allow-list=
# A comma-separated list of package or module names from where C extensions may
# be loaded. Extensions are loading into the active Python interpreter and may
# run arbitrary code. (This is an alternative name to extension-pkg-allow-list
# for backward compatibility.)
extension-pkg-whitelist=
# Return non-zero exit code if any of these messages/categories are detected,
# even if score is above --fail-under value. Syntax same as enable. Messages
# specified are enabled, while categories only check already-enabled messages.
fail-on=
# Specify a score threshold under which the program will exit with error.
fail-under=10
# Interpret the stdin as a python script, whose filename needs to be passed as
# the module_or_package argument.
#from-stdin=
# Files or directories to be skipped. They should be base names, not paths.
ignore=CVS
# Add files or directories matching the regular expressions patterns to the
# ignore-list. The regex matches against paths and can be in Posix or Windows
# format. Because '\\' represents the directory delimiter on Windows systems,
# it can't be used as an escape character.
ignore-paths=
# Files or directories matching the regular expression patterns are skipped.
# The regex matches against base names, not paths. The default value ignores
# Emacs file locks
ignore-patterns=^\.#
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis). It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# Python code to execute, usually for sys.path manipulation such as
# pygtk.require().
#init-hook=
# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
# number of processors available to use, and will cap the count on Windows to
# avoid hangs.
jobs=1
# Control the amount of potential inferred values when inferring a single
# object. This can help the performance when dealing with large functions or
# complex, nested conditions.
limit-inference-results=100
# List of plugins (as comma separated values of python module names) to load,
# usually to register additional checkers.
load-plugins=
# Pickle collected data for later comparisons.
persistent=yes
# Minimum Python version to use for version dependent checks. Will default to
# the version used to run pylint.
py-version=3.12
# Discover python modules and packages in the file system subtree.
recursive=no
# Add paths to the list of the source roots. Supports globbing patterns. The
# source root is an absolute path or a path relative to the current working
# directory used to determine a package namespace for modules located under the
# source root.
source-roots=
# When enabled, pylint would attempt to guess common misconfiguration and emit
# user-friendly hints instead of false-positive error messages.
suggestion-mode=yes
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
# In verbose mode, extra non-checker-related info will be displayed.
#verbose=
[BASIC]
# Naming style matching correct argument names.
argument-naming-style=snake_case
# Regular expression matching correct argument names. Overrides argument-
# naming-style. If left empty, argument names will be checked with the set
# naming style.
#argument-rgx=
# Naming style matching correct attribute names.
attr-naming-style=snake_case
# Regular expression matching correct attribute names. Overrides attr-naming-
# style. If left empty, attribute names will be checked with the set naming
# style.
#attr-rgx=
# Bad variable names which should always be refused, separated by a comma.
bad-names=foo,
bar,
baz,
toto,
tutu,
tata
# Bad variable names regexes, separated by a comma. If names match any regex,
# they will always be refused
bad-names-rgxs=
# Naming style matching correct class attribute names.
class-attribute-naming-style=any
# Regular expression matching correct class attribute names. Overrides class-
# attribute-naming-style. If left empty, class attribute names will be checked
# with the set naming style.
#class-attribute-rgx=
# Naming style matching correct class constant names.
class-const-naming-style=UPPER_CASE
# Regular expression matching correct class constant names. Overrides class-
# const-naming-style. If left empty, class constant names will be checked with
# the set naming style.
#class-const-rgx=
# Naming style matching correct class names.
class-naming-style=PascalCase
# Regular expression matching correct class names. Overrides class-naming-
# style. If left empty, class names will be checked with the set naming style.
#class-rgx=
# Naming style matching correct constant names.
const-naming-style=UPPER_CASE
# Regular expression matching correct constant names. Overrides const-naming-
# style. If left empty, constant names will be checked with the set naming
# style.
#const-rgx=
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=-1
# Naming style matching correct function names.
function-naming-style=snake_case
# Regular expression matching correct function names. Overrides function-
# naming-style. If left empty, function names will be checked with the set
# naming style.
#function-rgx=
# Good variable names which should always be accepted, separated by a comma.
good-names=i,
j,
k,
ex,
Run,
_
# Good variable names regexes, separated by a comma. If names match any regex,
# they will always be accepted
good-names-rgxs=
# Include a hint for the correct naming format with invalid-name.
include-naming-hint=no
# Naming style matching correct inline iteration names.
inlinevar-naming-style=any
# Regular expression matching correct inline iteration names. Overrides
# inlinevar-naming-style. If left empty, inline iteration names will be checked
# with the set naming style.
#inlinevar-rgx=
# Naming style matching correct method names.
method-naming-style=snake_case
# Regular expression matching correct method names. Overrides method-naming-
# style. If left empty, method names will be checked with the set naming style.
#method-rgx=
# Naming style matching correct module names.
module-naming-style=snake_case
# Regular expression matching correct module names. Overrides module-naming-
# style. If left empty, module names will be checked with the set naming style.
#module-rgx=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=^_
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
# These decorators are taken in consideration only for invalid-name.
property-classes=abc.abstractproperty
# Regular expression matching correct type alias names. If left empty, type
# alias names will be checked with the set naming style.
#typealias-rgx=
# Regular expression matching correct type variable names. If left empty, type
# variable names will be checked with the set naming style.
#typevar-rgx=
# Naming style matching correct variable names.
variable-naming-style=snake_case
# Regular expression matching correct variable names. Overrides variable-
# naming-style. If left empty, variable names will be checked with the set
# naming style.
#variable-rgx=
[CLASSES]
# Warn about protected attribute access inside special methods
check-protected-access-in-special-methods=no
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp,
asyncSetUp,
__post_init__
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,_fields,_replace,_source,_make,os._exit
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=mcs
[DESIGN]
# List of regular expressions of class ancestor names to ignore when counting
# public methods (see R0903)
exclude-too-few-public-methods=
# List of qualified class names to ignore when counting class parents (see
# R0901)
ignored-parents=
# Maximum number of arguments for function / method.
max-args=5
# Maximum number of attributes for a class (see R0902).
max-attributes=7
# Maximum number of boolean expressions in an if statement (see R0916).
max-bool-expr=5
# Maximum number of branch for function / method body.
max-branches=12
# Maximum number of locals for function / method body.
max-locals=15
# Maximum number of parents for a class (see R0901).
max-parents=7
# Maximum number of public methods for a class (see R0904).
max-public-methods=20
# Maximum number of return / yield for function / method body.
max-returns=6
# Maximum number of statements in function / method body.
max-statements=50
# Minimum number of public methods for a class (see R0903).
min-public-methods=2
[EXCEPTIONS]
# Exceptions that will emit a warning when caught.
overgeneral-exceptions=builtins.BaseException,builtins.Exception
[FORMAT]
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=^\s*(# )?<?https?://\S+>?$
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
# tab).
indent-string=' '
# Maximum number of characters on a single line.
max-line-length=100
# Maximum number of lines in a module.
max-module-lines=1000
# Allow the body of a class to be on the same line as the declaration if body
# contains single statement.
single-line-class-stmt=no
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=no
[IMPORTS]
# List of modules that can be imported at any level, not just the top level
# one.
allow-any-import-level=
# Allow explicit reexports by alias from a package __init__.
allow-reexport-from-package=no
# Allow wildcard imports from modules that define __all__.
allow-wildcard-with-all=no
# Deprecated modules which should not be used, separated by a comma.
deprecated-modules=
# Output a graph (.gv or any supported image format) of external dependencies
# to the given file (report RP0402 must not be disabled).
ext-import-graph=
# Output a graph (.gv or any supported image format) of all (i.e. internal and
# external) dependencies to the given file (report RP0402 must not be
# disabled).
import-graph=
# Output a graph (.gv or any supported image format) of internal dependencies
# to the given file (report RP0402 must not be disabled).
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant
# Couples of modules and preferred modules, separated by a comma.
preferred-modules=
[LOGGING]
# The type of string formatting that logging methods do. `old` means using %
# formatting, `new` is for `{}` formatting.
logging-format-style=old
# Logging modules to check that the string format arguments are in logging
# function parameter format.
logging-modules=logging
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, CONTROL_FLOW, INFERENCE, INFERENCE_FAILURE,
# UNDEFINED.
confidence=HIGH,
CONTROL_FLOW,
INFERENCE,
INFERENCE_FAILURE,
UNDEFINED
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once). You can also use "--disable=all" to
# disable everything first and then re-enable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use "--disable=all --enable=classes
# --disable=W".
disable=raw-checker-failed,
bad-inline-option,
locally-disabled,
file-ignored,
suppressed-message,
useless-suppression,
deprecated-pragma,
use-symbolic-message-instead,
use-implicit-booleaness-not-comparison-to-string,
use-implicit-booleaness-not-comparison-to-zero,
missing-module-docstring,
missing-function-docstring,
missing-class-docstring
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
enable=
[METHOD_ARGS]
# List of qualified names (i.e., library.method) which require a timeout
# parameter e.g. 'requests.api.get,requests.api.post'
timeout-methods=requests.api.delete,requests.api.get,requests.api.head,requests.api.options,requests.api.patch,requests.api.post,requests.api.put,requests.api.request
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=FIXME,
XXX,
TODO
# Regular expression of note tags to take in consideration.
notes-rgx=
[REFACTORING]
# Maximum number of nested blocks for function / method body
max-nested-blocks=5
# Complete name of functions that never returns. When checking for
# inconsistent-return-statements if a never returning function is called then
# it will be considered as an explicit return statement and no message will be
# printed.
never-returning-functions=sys.exit,argparse.parse_error
[REPORTS]
# Python expression which should return a score less than or equal to 10. You
# have access to the variables 'fatal', 'error', 'warning', 'refactor',
# 'convention', and 'info' which contain the number of messages in each
# category, as well as 'statement' which is the total number of statements
# analyzed. This score is used by the global evaluation report (RP0004).
evaluation=max(0, 0 if fatal else 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10))
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details.
msg-template=
# Set the output format. Available formats are: text, parseable, colorized,
# json2 (improved json format), json (old json format) and msvs (visual
# studio). You can also give a reporter class, e.g.
# mypackage.mymodule.MyReporterClass.
#output-format=
# Tells whether to display a full report or only the messages.
reports=no
# Activate the evaluation score.
score=yes
[SIMILARITIES]
# Comments are removed from the similarity computation
ignore-comments=yes
# Docstrings are removed from the similarity computation
ignore-docstrings=yes
# Imports are removed from the similarity computation
ignore-imports=yes
# Signatures are removed from the similarity computation
ignore-signatures=yes
# Minimum lines number of a similarity.
min-similarity-lines=4
[SPELLING]
# Limits count of emitted suggestions for spelling mistakes.
max-spelling-suggestions=4
# Spelling dictionary name. No available dictionaries : You need to install
# both the python package and the system dependency for enchant to work.
spelling-dict=
# List of comma separated words that should be considered directives if they
# appear at the beginning of a comment and should not be checked.
spelling-ignore-comment-directives=fmt: on,fmt: off,noqa:,noqa,nosec,isort:skip,mypy:
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains the private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to the private dictionary (see the
# --spelling-private-dict-file option) instead of raising a message.
spelling-store-unknown-words=no
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=yes
# This flag controls whether the implicit-str-concat should generate a warning
# on implicit string concatenation in sequences defined over several lines.
check-str-concat-over-line-jumps=no
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
# Tells whether to warn about missing members when the owner of the attribute
# is inferred to be None.
ignore-none=yes
# This flag controls whether pylint should warn about no-member and similar
# checks whenever an opaque object is returned when inferring. The inference
# can return multiple potential results while evaluating a Python object, but
# some branches might not be evaluated, which results in partial inference. In
# that case, it might be useful to still emit no-member and other checks for
# the rest of the inferred objects.
ignore-on-opaque-inference=yes
# List of symbolic message names to ignore for Mixin members.
ignored-checks-for-mixins=no-member,
not-async-context-manager,
not-context-manager,
attribute-defined-outside-init
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local,argparse.Namespace
# Show a hint with possible names when a member name was not found. The aspect
# of finding the hint is based on edit distance.
missing-member-hint=yes
# The minimum edit distance a name should have in order to be considered a
# similar match for a missing member name.
missing-member-hint-distance=1
# The total number of similar names that should be taken in consideration when
# showing a hint for a missing member.
missing-member-max-choices=1
# Regex pattern to define which classes are considered mixins.
mixin-class-rgx=.*[Mm]ixin
# List of decorators that change the signature of a decorated function.
signature-mutators=
[VARIABLES]
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid defining new builtins when possible.
additional-builtins=
# Tells whether unused global variables should be treated as a violation.
allow-global-unused-variables=yes
# List of names allowed to shadow builtins
allowed-redefined-builtins=
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,
_cb
# A regular expression matching the name of dummy variables (i.e. expected to
# not be used).
dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
# Argument names that match this expression will be ignored.
ignored-argument-names=_.*|^ignored_|^unused_
# Tells whether we should check for unused import in __init__ files.
init-import=no
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io

View file

@ -67,6 +67,8 @@ Try it yourself on Whatsapp with one of our <a href="https://keepi.ai">partners<
## Getting started
### Run with Docker
To run cognee you need to have <a href="https://docs.docker.com/get-docker" target="_blank">Docker</a> installed on your machine.
Run <a href="https://www.cognee.ai" target="_blank">Cognee</a> in a couple of steps:
@ -74,15 +76,23 @@ Run <a href="https://www.cognee.ai" target="_blank">Cognee</a> in a couple of st
- Run `docker compose up` in order to start graph and relational databases
- Run `docker compose up cognee` in order start Cognee
<!-- Send API requests add-memory, user-query-to-graph, document-to-graph-db, user-query-processor to the locahost:8000 -->
## Debugging
#### Debugging
To run Cognee with debugger attached you need to build the Cognee image with the `DEBUG` flag set to true.
- `docker compose build cognee --no-cache --build-arg DEBUG=true`
- `docker compose up cognee`
### Run without Docker
- Run `PYTHONPATH=. python cognitive_architecture/setup_database.py` to setup database
- Run `python -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app`
#### Debugging
- Run `python -m debugpy --wait-for-client --listen localhost:5678 -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app`
- Attach debugger
<!-- Send API requests add-memory, user-query-to-graph, document-to-graph-db, user-query-processor to the locahost:8000 -->
## Demo
[<img src="https://i3.ytimg.com/vi/yjParvJVgPI/maxresdefault.jpg" width="100%">](https://www.youtube.com/watch?v=yjParvJVgPI "Learn about cognee: 55")

56
api.py
View file

@ -18,7 +18,7 @@ from cognitive_architecture.config import Config
config = Config()
config.load()
from typing import Dict, Any
from typing import Dict, Any, List
from fastapi import FastAPI, BackgroundTasks, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
@ -57,6 +57,54 @@ def health_check():
class Payload(BaseModel):
payload: Dict[str, Any]
from cognitive_architecture.api.v1.memory.create_memory import MemoryType
class CreateMemoryPayload(BaseModel):
user_id: str
memory_name: str
memory_type: MemoryType
@app.post("/create-memory", response_model=dict)
async def create_memory(payload: CreateMemoryPayload):
from cognitive_architecture.api.v1.memory.create_memory import create_memory as create_memory_v1, MemoryException
try:
await create_memory_v1(
payload.user_id,
payload.memory_name,
payload.memory_type or MemoryType.VECTOR,
)
except MemoryException as error:
return JSONResponse(
status_code = 409,
content = { "error": error.message }
)
return JSONResponse(
status_code = 200,
content = { "memory_name": payload.memory_name }
)
class RememberPayload(BaseModel):
user_id: str
memory_name: str
payload: List[str]
@app.post("/remember", response_model=dict)
async def remember(payload: RememberPayload):
from cognitive_architecture.api.v1.memory.remember import remember as remember_v1
await remember_v1(
payload.user_id,
payload.memory_name,
payload.payload
)
return JSONResponse(
status_code = 200,
content = { "message": "ok" }
)
@app.post("/add-memory", response_model=dict)
async def add_memory(
@ -83,9 +131,9 @@ async def add_memory(
content = None
output = await load_documents_to_vectorstore(
session,
decoded_payload["user_id"],
session = session,
content = content,
user_id = decoded_payload["user_id"],
loader_settings = settings_for_loader,
)
return JSONResponse(content={"response": output}, status_code=200)
@ -114,9 +162,9 @@ async def add_memory(
loader_settings = {"format": "PDF", "source": "DEVICE", "path": [".data"]}
output = await load_documents_to_vectorstore(
session,
user_id = user_id,
content = content,
session = session,
loader_settings = loader_settings,
)
return JSONResponse(content={"response": output}, status_code=200)

View file

@ -0,0 +1,32 @@
from enum import Enum
from qdrant_client.models import Distance, VectorParams
from cognitive_architecture.modules.memory.vector import create_vector_memory
from cognitive_architecture.modules.users.memory import is_existing_memory, register_memory_for_user
from cognitive_architecture.infrastructure.databases.vector.qdrant.adapter import CollectionConfig
class MemoryType(Enum):
GRAPH = "GRAPH"
VECTOR = "VECTOR"
RELATIONAL = "RELATIONAL"
class MemoryException(Exception):
message: str
def __init__(self, message: str):
self.message = message
async def create_memory(user_id: str, memory_name: str, memory_type: MemoryType):
if await is_existing_memory(memory_name):
raise MemoryException(f'Memory with the name "{memory_name}" already exists. Memory names must be unique.')
match memory_type:
case MemoryType.VECTOR:
await create_vector_memory(memory_name, CollectionConfig(
vector_config = VectorParams(
size = 1536,
distance = Distance.DOT,
)
))
await register_memory_for_user(user_id, memory_name)

View file

@ -0,0 +1,21 @@
from typing import List
from enum import Enum
from cognitive_architecture.modules.users.memory import create_information_points, is_existing_memory
class MemoryType(Enum):
GRAPH = "GRAPH"
VECTOR = "VECTOR"
RELATIONAL = "RELATIONAL"
class MemoryException(Exception):
message: str
def __init__(self, message: str):
self.message = message
async def remember(user_id: str, memory_name: str, payload: List[str]):
if await is_existing_memory(memory_name) is False:
raise MemoryException(f"Memory with the name \"{memory_name}\" doesn't exist.")
await create_information_points(memory_name, payload)

View file

@ -30,8 +30,11 @@ class Config:
db_path = Path(__file__).resolve().parent / "database/data"
vectordb: str = os.getenv("VECTORDB", "weaviate")
qdrant_path: str = os.getenv("QDRANT_PATH")
qdrant_url: str = os.getenv("QDRANT_URL")
qdrant_api_key: str = os.getenv("QDRANT_API_KEY")
db_type: str = os.getenv("DB_TYPE", "sqlite")
db_name: str = os.getenv("DB_NAME", "cognee.db")
db_name: str = os.getenv("DB_NAME", "cognee.sqlite")
db_host: str = os.getenv("DB_HOST", "localhost")
db_port: str = os.getenv("DB_PORT", "5432")
db_user: str = os.getenv("DB_USER", "cognee")

View file

@ -2,11 +2,8 @@
from datetime import datetime
from sqlalchemy import Column, String, DateTime, ForeignKey, Boolean
from sqlalchemy.orm import relationship
import os
import sys
from ..database import Base
class DocsModel(Base):
""" Docs model"""
__tablename__ = "docs"

View file

@ -1,6 +1,6 @@
""" This module contains the MemoryModel class, which is a SQLAlchemy model for the memory table in the relational database. """
from datetime import datetime
from sqlalchemy import Column, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime, ForeignKey, UUID
from sqlalchemy.orm import relationship
from ..database import Base
@ -9,7 +9,7 @@ class MemoryModel(Base):
""" Memory model"""
__tablename__ = "memories"
id = Column(String, primary_key=True)
id = Column(UUID, primary_key=True)
user_id = Column(String, ForeignKey("users.id"), index=True)
operation_id = Column(String, ForeignKey("operations.id"), index=True)
memory_name = Column(String, nullable=True)

View file

@ -0,0 +1,74 @@
import uuid
from pathlib import Path
from sqlalchemy import select
from sqlalchemy.ext.asyncio import create_async_engine, async_sessionmaker, AsyncSession
from cognitive_architecture.config import Config
# from ..relational_db_interface import RelationalDBInterface
from cognitive_architecture.database.relationaldb.models.memory import MemoryModel
config = Config()
config.load()
class RelationalDBAdapter():
session_maker: async_sessionmaker[AsyncSession]
def __init__(self):
engine = create_async_engine(
self.get_database_url(),
pool_recycle = 3600,
echo = config.sqlalchemy_logging,
)
self.create_session = async_sessionmaker[AsyncSession](
bind = engine,
class_ = AsyncSession,
expire_on_commit = False,
)
def get_database_url(
self,
db_type = config.db_type,
db_name = config.db_name,
db_path = config.db_path,
user = config.db_user,
password = config.db_password,
host = config.db_host,
port = config.db_port,
):
if db_type == "sqlite":
db_path = (Path(db_path) / db_name).absolute()
return f"sqlite+aiosqlite:///{db_path}" # SQLite uses file path
elif db_type == "duckdb":
db_path = (Path(db_path) / db_name).absolute()
return f"duckdb+aiosqlite:///{db_path}"
elif db_type == "postgresql":
# Ensure optional parameters are handled gracefully
port_str = f":{port}" if port else ""
password_str = f":{password}" if password else ""
if not all([user, host]):
raise ValueError("User and host are required for PostgreSQL connections.")
return f"postgresql+asyncpg://{user}{password_str}@{host}{port_str}/{db_name}"
else:
raise ValueError(f"Unsupported database type: {db_type}")
async def add_memory(self, user_id: str, memory_name: str):
memory_id = uuid.uuid4()
async with self.create_session() as session:
async with session.begin():
return session.add(MemoryModel(
id = memory_id,
user_id = user_id,
memory_name = memory_name,
))
async def get_memory_by_name(self, memory_name: int):
async with self.create_session() as session:
async with session.begin():
result = await session.execute(
select(MemoryModel.id)
.where(MemoryModel.memory_name == memory_name)
)
memory = result.scalars().one_or_none()
return memory

View file

@ -0,0 +1,26 @@
# from datetime import datetime, timezone
# from sqlalchemy.orm import relationship
# # from sqlalchemy.orm import DeclarativeBase
# from sqlalchemy import Column, String, DateTime, ForeignKey
# from cognitive_architecture.database.relationaldb.database import Base
# class MemoryModel(Base):
# __tablename__ = "memories_v1"
# id = Column(String, primary_key = True)
# user_id = Column(String, ForeignKey("users.id"), index = True)
# memory_name = Column(String, nullable = True)
# memory_category = Column(String, nullable = True)
# created_at = Column(DateTime, default = datetime.now(timezone.utc))
# updated_at = Column(DateTime, onupdate = datetime.now(timezone.utc))
# methods_list = Column(String, nullable = True)
# attributes_list = Column(String, nullable = True)
# user = relationship("User", back_populates="memories")
# metadatas = relationship(
# "MetaDatas", back_populates="memory", cascade="all, delete-orphan"
# )
# def __repr__(self):
# return f"<Memory(id={self.id}, user_id={self.user_id}, created_at={self.created_at}, updated_at={self.updated_at})>"

View file

@ -0,0 +1,4 @@
from .general.adapter import RelationalDBAdapter
def get_database():
return RelationalDBAdapter()

View file

@ -0,0 +1,26 @@
from abc import abstractmethod
from typing import Protocol, TypeVar, Type, List
RowDataType = TypeVar('RowDataType')
class RelationalDBInterface(Protocol):
@abstractmethod
async def create_database(self, database_name: str, database_path: str): raise NotImplementedError
@abstractmethod
async def create_table(self, table_name: str, table_config: object): raise NotImplementedError
@abstractmethod
async def add_row(self, table_name: str, row_data: Type[RowDataType]): raise NotImplementedError
@abstractmethod
async def add_rows(self, table_name: str, rows_data: List[Type[RowDataType]]): raise NotImplementedError
@abstractmethod
async def get_row(self, table_name: str, row_id: str): raise NotImplementedError
@abstractmethod
async def update_row(self, table_name: str, row_id: str, row_data: Type[RowDataType]): raise NotImplementedError
@abstractmethod
async def delete_row(self, table_name: str, row_id: str): raise NotImplementedError

View file

@ -0,0 +1,8 @@
from cognitive_architecture.config import Config
from .qdrant import QDrantAdapter
config = Config()
config.load()
def get_vector_database():
return QDrantAdapter(config.qdrant_path, config.qdrant_url, config.qdrant_api_key)

View file

@ -0,0 +1,95 @@
import typing
from qdrant_client import AsyncQdrantClient, models
from databases.vector.vector_db_interface import VectorDBInterface
class VectorConfig(extra='forbid'):
size: int
distance: str
on_disk: bool
class CollectionConfig(extra='forbid'):
vector_config: VectorConfig
hnsw_config: models.HnswConfig
optimizers_config: models.OptimizersConfig
quantization_config: models.QuantizationConfig
class LanceDBAdapter(VectorDBInterface):
def __init__(self, lancedb_url, lancedb_api_key):
self.lancedb_url = lancedb_url
self.lancedb_api_key = lancedb_api_key
def get_lancedb_client(self) -> AsyncQdrantClient:
return AsyncQdrantClient(
url = self.lancedb_url,
api_key = self.lancedb_api_key,
location = ':memory:'
)
async def create_collection(
self,
collection_name: str,
collection_config: CollectionConfig
):
client = self.get_lancedb_client()
return await client.create_collection(
collection_name = collection_name,
vectors_config = collection_config.vector_config,
hnsw_config = collection_config.hnsw_config,
optimizers_config = collection_config.optimizers_config,
quantization_config = collection_config.quantization_config
)
async def create_data_points(self, collection_name: str, data_points: typing.List[any]):
client = self.get_lancedb_client()
async def create_data_point(data):
return {
'vector': {},
'payload': data
}
return await client.upload_points(
collection_name = collection_name,
points = map(create_data_point, data_points)
)
# class LanceDB(VectorDB):
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
# self.db = self.init_lancedb()
# def init_lancedb(self):
# # Initialize LanceDB connection
# # Adjust the URI as needed for your LanceDB setup
# uri = "s3://my-bucket/lancedb" if self.namespace else "~/.lancedb"
# db = lancedb.connect(uri, api_key=os.getenv("LANCEDB_API_KEY"))
# return db
# def create_table(
# self,
# name: str,
# schema: Optional[pa.Schema] = None,
# data: Optional[pd.DataFrame] = None,
# ):
# # Create a table in LanceDB. If schema is not provided, it will be inferred from the data.
# if data is not None and schema is None:
# schema = pa.Schema.from_pandas(data)
# table = self.db.create_table(name, schema=schema)
# if data is not None:
# table.add(data.to_dict("records"))
# return table
# def add_memories(self, table_name: str, data: pd.DataFrame):
# # Add data to an existing table in LanceDB
# table = self.db.open_table(table_name)
# table.add(data.to_dict("records"))
# def fetch_memories(
# self, table_name: str, query_vector: List[float], top_k: int = 10
# ):
# # Perform a vector search in the specified table
# table = self.db.open_table(table_name)
# results = table.search(query_vector).limit(top_k).to_pandas()
# return results

View file

@ -0,0 +1,8 @@
class PineconeVectorDB(VectorDB):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_pinecone(self.index_name)
def init_pinecone(self, index_name):
# Pinecone initialization logic
pass

View file

@ -0,0 +1 @@
from .adapter import QDrantAdapter

View file

@ -1,13 +1,61 @@
from vector.vector_db_interface import VectorDBInterface
from qdrant_client import AsyncQdrantClient
from typing import List, Optional
from pydantic import BaseModel, Field
from qdrant_client import AsyncQdrantClient, models
from ..vector_db_interface import VectorDBInterface
class CollectionConfig(BaseModel, extra = "forbid"):
vector_config: models.VectorParams = Field(..., description="Vector configuration")
hnsw_config: Optional[models.HnswConfig] = Field(default = None, description="HNSW vector index configuration")
optimizers_config: Optional[models.OptimizersConfig] = Field(default = None, description="Optimizers configuration")
quantization_config: Optional[models.QuantizationConfig] = Field(default = None, description="Quantization configuration")
class QDrantAdapter(VectorDBInterface):
def __init__(self, qdrant_url, qdrant_api_key):
self.qdrant_client = AsyncQdrantClient(qdrant_url, qdrant_api_key)
qdrant_url: str = None
qdrant_path: str = None
qdrant_api_key: str = None
def __init__(self, qdrant_path, qdrant_url, qdrant_api_key):
if qdrant_path is not None:
self.qdrant_path = qdrant_path
else:
self.qdrant_url = qdrant_url
self.qdrant_api_key = qdrant_api_key
def get_qdrant_client(self) -> AsyncQdrantClient:
if self.qdrant_path is not None:
return AsyncQdrantClient(
path = self.qdrant_path,
)
elif self.qdrant_url is not None:
return AsyncQdrantClient(
url = self.qdrant_url,
api_key = self.qdrant_api_key,
)
return AsyncQdrantClient(
location = ":memory:"
)
async def create_collection(
self,
collection_name: str,
collection_config: object
collection_config: CollectionConfig,
):
return await self.qdrant_client.create_collection(collection_name, collection_config)
client = self.get_qdrant_client()
return await client.create_collection(
collection_name = collection_name,
vectors_config = collection_config.vector_config,
hnsw_config = collection_config.hnsw_config,
optimizers_config = collection_config.optimizers_config,
quantization_config = collection_config.quantization_config
)
async def create_data_points(self, collection_name: str, data_points: List[any]):
client = self.get_qdrant_client()
return await client.upload_points(
collection_name = collection_name,
points = data_points
)

View file

@ -1,3 +1,4 @@
from typing import List
from abc import abstractmethod
from typing import Protocol
@ -10,59 +11,59 @@ class VectorDBInterface(Protocol):
collection_config: object
): raise NotImplementedError
@abstractmethod
async def update_collection(
self,
collection_name: str,
collection_config: object
): raise NotImplementedError
# @abstractmethod
# async def update_collection(
# self,
# collection_name: str,
# collection_config: object
# ): raise NotImplementedError
@abstractmethod
async def delete_collection(
self,
collection_name: str
): raise NotImplementedError
# @abstractmethod
# async def delete_collection(
# self,
# collection_name: str
# ): raise NotImplementedError
@abstractmethod
async def create_vector_index(
self,
collection_name: str,
vector_index_config: object
): raise NotImplementedError
# @abstractmethod
# async def create_vector_index(
# self,
# collection_name: str,
# vector_index_config: object
# ): raise NotImplementedError
@abstractmethod
async def create_data_index(
self,
collection_name: str,
vector_index_config: object
): raise NotImplementedError
# @abstractmethod
# async def create_data_index(
# self,
# collection_name: str,
# vector_index_config: object
# ): raise NotImplementedError
""" Data points """
@abstractmethod
async def create_data_point(
async def create_data_points(
self,
collection_name: str,
payload: object
data_points: List[any]
): raise NotImplementedError
@abstractmethod
async def get_data_point(
self,
collection_name: str,
data_point_id: str
): raise NotImplementedError
# @abstractmethod
# async def get_data_point(
# self,
# collection_name: str,
# data_point_id: str
# ): raise NotImplementedError
@abstractmethod
async def update_data_point(
self,
collection_name: str,
data_point_id: str,
payload: object
): raise NotImplementedError
# @abstractmethod
# async def update_data_point(
# self,
# collection_name: str,
# data_point_id: str,
# payload: object
# ): raise NotImplementedError
@abstractmethod
async def delete_data_point(
self,
collection_name: str,
data_point_id: str
): raise NotImplementedError
# @abstractmethod
# async def delete_data_point(
# self,
# collection_name: str,
# data_point_id: str
# ): raise NotImplementedError

View file

@ -0,0 +1,417 @@
from weaviate.gql.get import HybridFusion
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.retrievers import WeaviateHybridSearchRetriever, ParentDocumentRetriever
from databases.vector.vector_db_interface import VectorDBInterface
# from langchain.text_splitter import RecursiveCharacterTextSplitter
from cognitive_architecture.database.vectordb.loaders.loaders import _document_loader
class WeaviateVectorDB(VectorDBInterface):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_weaviate(embeddings=self.embeddings, namespace=self.namespace)
def init_weaviate(
self,
embeddings=OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY", "")),
namespace=None,
retriever_type="",
):
# Weaviate initialization logic
auth_config = weaviate.auth.AuthApiKey(
api_key=os.environ.get("WEAVIATE_API_KEY")
)
client = weaviate.Client(
url=os.environ.get("WEAVIATE_URL"),
auth_client_secret=auth_config,
additional_headers={"X-OpenAI-Api-Key": os.environ.get("OPENAI_API_KEY")},
)
if retriever_type == "single_document_context":
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=namespace,
text_key="text",
attributes=[],
embedding=embeddings,
create_schema_if_missing=True,
)
return retriever
elif retriever_type == "multi_document_context":
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=namespace,
text_key="text",
attributes=[],
embedding=embeddings,
create_schema_if_missing=True,
)
return retriever
else:
return client
# child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
# store = InMemoryStore()
# retriever = ParentDocumentRetriever(
# vectorstore=vectorstore,
# docstore=store,
# child_splitter=child_splitter,
# )
from marshmallow import Schema, fields
def create_document_structure(observation, params, metadata_schema_class=None):
"""
Create and validate a document structure with optional custom fields.
:param observation: Content of the document.
:param params: Metadata information.
:param metadata_schema_class: Custom metadata schema class (optional).
:return: A list containing the validated document data.
"""
document_data = {"metadata": params, "page_content": observation}
def get_document_schema():
class DynamicDocumentSchema(Schema):
metadata = fields.Nested(metadata_schema_class, required=True)
page_content = fields.Str(required=True)
return DynamicDocumentSchema
# Validate and deserialize, defaulting to "1.0" if not provided
CurrentDocumentSchema = get_document_schema()
loaded_document = CurrentDocumentSchema().load(document_data)
return [loaded_document]
def _stuct(self, observation, params, metadata_schema_class=None):
"""Utility function to create the document structure with optional custom fields."""
# Construct document data
document_data = {"metadata": params, "page_content": observation}
def get_document_schema():
class DynamicDocumentSchema(Schema):
metadata = fields.Nested(metadata_schema_class, required=True)
page_content = fields.Str(required=True)
return DynamicDocumentSchema
# Validate and deserialize # Default to "1.0" if not provided
CurrentDocumentSchema = get_document_schema()
loaded_document = CurrentDocumentSchema().load(document_data)
return [loaded_document]
async def add_memories(
self,
observation,
loader_settings=None,
params=None,
namespace=None,
metadata_schema_class=None,
embeddings="hybrid",
):
# Update Weaviate memories here
if namespace is None:
namespace = self.namespace
params["user_id"] = self.user_id
logging.info("User id is %s", self.user_id)
retriever = self.init_weaviate(
embeddings=OpenAIEmbeddings(),
namespace=namespace,
retriever_type="single_document_context",
)
if loader_settings:
# Assuming _document_loader returns a list of documents
documents = await _document_loader(observation, loader_settings)
logging.info("here are the docs %s", str(documents))
chunk_count = 0
for doc_list in documents:
for doc in doc_list:
chunk_count += 1
params["chunk_count"] = doc.metadata.get("chunk_count", "None")
logging.info(
"Loading document with provided loader settings %s", str(doc)
)
params["source"] = doc.metadata.get("source", "None")
logging.info("Params are %s", str(params))
retriever.add_documents(
[Document(metadata=params, page_content=doc.page_content)]
)
else:
chunk_count = 0
from cognitive_architecture.database.vectordb.chunkers.chunkers import (
chunk_data,
)
documents = [
chunk_data(
chunk_strategy="VANILLA",
source_data=observation,
chunk_size=300,
chunk_overlap=20,
)
]
for doc in documents[0]:
chunk_count += 1
params["chunk_order"] = chunk_count
params["source"] = "User loaded"
logging.info(
"Loading document with default loader settings %s", str(doc)
)
logging.info("Params are %s", str(params))
retriever.add_documents(
[Document(metadata=params, page_content=doc.page_content)]
)
async def fetch_memories(
self,
observation: str,
namespace: str = None,
search_type: str = "hybrid",
params=None,
**kwargs,
):
"""
Fetch documents from weaviate.
Parameters:
- observation (str): User query.
- namespace (str, optional): Type of memory accessed.
- search_type (str, optional): Type of search ('text', 'hybrid', 'bm25', 'generate', 'generate_grouped'). Defaults to 'hybrid'.
- **kwargs: Additional parameters for flexibility.
Returns:
List of documents matching the query or an empty list in case of error.
Example:
fetch_memories(query="some query", search_type='text', additional_param='value')
"""
client = self.init_weaviate(namespace=self.namespace)
if search_type is None:
search_type = "hybrid"
if not namespace:
namespace = self.namespace
logging.info("Query on namespace %s", namespace)
params_user_id = {
"path": ["user_id"],
"operator": "Like",
"valueText": self.user_id,
}
def list_objects_of_class(class_name, schema):
return [
prop["name"]
for class_obj in schema["classes"]
if class_obj["class"] == class_name
for prop in class_obj["properties"]
]
base_query = (
client.query.get(
namespace, list(list_objects_of_class(namespace, client.schema.get()))
)
.with_additional(
["id", "creationTimeUnix", "lastUpdateTimeUnix", "score", "distance"]
)
.with_where(params_user_id)
.with_limit(10)
)
n_of_observations = kwargs.get("n_of_observations", 2)
# try:
if search_type == "text":
query_output = (
base_query.with_near_text({"concepts": [observation]})
.with_autocut(n_of_observations)
.do()
)
elif search_type == "hybrid":
query_output = (
base_query.with_hybrid(
query=observation, fusion_type=HybridFusion.RELATIVE_SCORE
)
.with_autocut(n_of_observations)
.do()
)
elif search_type == "bm25":
query_output = (
base_query.with_bm25(query=observation)
.with_autocut(n_of_observations)
.do()
)
elif search_type == "summary":
filter_object = {
"operator": "And",
"operands": [
{
"path": ["user_id"],
"operator": "Equal",
"valueText": self.user_id,
},
{
"path": ["chunk_order"],
"operator": "LessThan",
"valueNumber": 30,
},
],
}
base_query = (
client.query.get(
namespace,
list(list_objects_of_class(namespace, client.schema.get())),
)
.with_additional(
[
"id",
"creationTimeUnix",
"lastUpdateTimeUnix",
"score",
"distance",
]
)
.with_where(filter_object)
.with_limit(30)
)
query_output = (
base_query
# .with_hybrid(query=observation, fusion_type=HybridFusion.RELATIVE_SCORE)
.do()
)
elif search_type == "summary_filter_by_object_name":
filter_object = {
"operator": "And",
"operands": [
{
"path": ["user_id"],
"operator": "Equal",
"valueText": self.user_id,
},
{
"path": ["doc_id"],
"operator": "Equal",
"valueText": params,
},
],
}
base_query = (
client.query.get(
namespace,
list(list_objects_of_class(namespace, client.schema.get())),
)
.with_additional(
[
"id",
"creationTimeUnix",
"lastUpdateTimeUnix",
"score",
"distance",
]
)
.with_where(filter_object)
.with_limit(30)
.with_hybrid(query=observation, fusion_type=HybridFusion.RELATIVE_SCORE)
)
query_output = base_query.do()
return query_output
elif search_type == "generate":
generate_prompt = kwargs.get("generate_prompt", "")
query_output = (
base_query.with_generate(single_prompt=observation)
.with_near_text({"concepts": [observation]})
.with_autocut(n_of_observations)
.do()
)
elif search_type == "generate_grouped":
generate_prompt = kwargs.get("generate_prompt", "")
query_output = (
base_query.with_generate(grouped_task=observation)
.with_near_text({"concepts": [observation]})
.with_autocut(n_of_observations)
.do()
)
else:
logging.error(f"Invalid search_type: {search_type}")
return []
# except Exception as e:
# logging.error(f"Error executing query: {str(e)}")
# return []
return query_output
async def delete_memories(self, namespace: str, params: dict = None):
if namespace is None:
namespace = self.namespace
client = self.init_weaviate(namespace=self.namespace)
if params:
where_filter = {
"path": ["id"],
"operator": "Equal",
"valueText": params.get("id", None),
}
return client.batch.delete_objects(
class_name=self.namespace,
# Same `where` filter as in the GraphQL API
where=where_filter,
)
else:
# Delete all objects
return client.batch.delete_objects(
class_name=namespace,
where={
"path": ["version"],
"operator": "Equal",
"valueText": "1.0",
},
)
async def count_memories(self, namespace: str = None, params: dict = None) -> int:
"""
Count memories in a Weaviate database.
Args:
namespace (str, optional): The Weaviate namespace to count memories in. If not provided, uses the default namespace.
Returns:
int: The number of memories in the specified namespace.
"""
if namespace is None:
namespace = self.namespace
client = self.init_weaviate(namespace=namespace)
try:
object_count = client.query.aggregate(namespace).with_meta_count().do()
return object_count
except Exception as e:
logging.info(f"Error counting memories: {str(e)}")
# Handle the error or log it
return 0
def update_memories(self, observation, namespace: str, params: dict = None):
client = self.init_weaviate(namespace=self.namespace)
client.data_object.update(
data_object={
# "text": observation,
"user_id": str(self.user_id),
"version": params.get("version", None) or "",
"agreement_id": params.get("agreement_id", None) or "",
"privacy_policy": params.get("privacy_policy", None) or "",
"terms_of_service": params.get("terms_of_service", None) or "",
"format": params.get("format", None) or "",
"schema_version": params.get("schema_version", None) or "",
"checksum": params.get("checksum", None) or "",
"owner": params.get("owner", None) or "",
"license": params.get("license", None) or "",
"validity_start": params.get("validity_start", None) or "",
"validity_end": params.get("validity_end", None) or ""
# **source_metadata,
},
class_name="Test",
uuid=params.get("id", None),
consistency_level=weaviate.data.replication.ConsistencyLevel.ALL, # default QUORUM
)
return

View file

@ -0,0 +1,311 @@
class Memory:
def __init__(
self,
user_id: str = "676",
session=None,
index_name: str = None,
db_type: str = globalConfig.vectordb,
namespace: str = None,
memory_id: str = None,
memory_class=None,
job_id: str = None,
) -> None:
self.load_environment_variables()
self.memory_id = memory_id
self.user_id = user_id
self.session = session
self.index_name = index_name
self.db_type = db_type
self.namespace = namespace
self.memory_instances = []
self.memory_class = memory_class
self.job_id = job_id
# self.memory_class = DynamicBaseMemory(
# "Memory", user_id, str(self.memory_id), index_name, db_type, namespace
# )
def load_environment_variables(self) -> None:
self.OPENAI_TEMPERATURE = globalConfig.openai_temperature
self.OPENAI_API_KEY = globalConfig.openai_key
@classmethod
async def create_memory(
cls,
user_id: str,
session,
job_id: str = None,
memory_label: str = None,
**kwargs,
):
"""
Class method that acts as a factory method for creating Memory instances.
It performs necessary DB checks or updates before instance creation.
"""
existing_user = await cls.check_existing_user(user_id, session)
logging.info(f"Existing user: {existing_user}")
if existing_user:
# Handle existing user scenario...
memory_id = await cls.check_existing_memory(user_id, memory_label, session)
if memory_id is None:
memory_id = await cls.handle_new_memory(
user_id=user_id,
session=session,
job_id=job_id,
memory_name=memory_label,
)
logging.info(
f"Existing user {user_id} found in the DB. Memory ID: {memory_id}"
)
else:
# Handle new user scenario...
await cls.handle_new_user(user_id, session)
memory_id = await cls.handle_new_memory(
user_id=user_id,
session=session,
job_id=job_id,
memory_name=memory_label,
)
logging.info(
f"New user {user_id} created in the DB. Memory ID: {memory_id}"
)
memory_class = DynamicBaseMemory(
memory_label,
user_id,
str(memory_id),
index_name=memory_label,
db_type=globalConfig.vectordb,
**kwargs,
)
return cls(
user_id=user_id,
session=session,
memory_id=memory_id,
job_id=job_id,
memory_class=memory_class,
**kwargs,
)
async def list_memory_classes(self):
"""
Lists all available memory classes in the memory instance.
"""
# Use a list comprehension to filter attributes that end with '_class'
return [attr for attr in dir(self) if attr.endswith("_class")]
@staticmethod
async def check_existing_user(user_id: str, session):
"""Check if a user exists in the DB and return it."""
result = await session.execute(select(User).where(User.id == user_id))
return result.scalar_one_or_none()
@staticmethod
async def check_existing_memory(user_id: str, memory_label: str, session):
"""Check if a user memory exists in the DB and return it. Filters by user and label"""
try:
result = await session.execute(
select(MemoryModel.id)
.where(MemoryModel.user_id == user_id)
.filter_by(memory_name=memory_label)
.order_by(MemoryModel.created_at)
)
return result.scalar_one_or_none()
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
return None
@staticmethod
async def handle_new_user(user_id: str, session):
"""
Handle new user creation in the database.
Args:
user_id (str): The unique identifier for the new user.
session: The database session for the operation.
Returns:
str: A success message or an error message.
Raises:
Exception: If any error occurs during the user creation process.
"""
try:
new_user = User(id=user_id)
await add_entity(session, new_user)
return "User creation successful."
except Exception as e:
return f"Error creating user: {str(e)}"
@staticmethod
async def handle_new_memory(
user_id: str,
session,
job_id: str = None,
memory_name: str = None,
memory_category: str = "PUBLIC",
):
"""
Handle new memory creation associated with a user.
Args:
user_id (str): The user's unique identifier.
session: The database session for the operation.
job_id (str, optional): The identifier of the associated job, if any.
memory_name (str, optional): The name of the memory.
Returns:
str: The unique memory ID if successful, or an error message.
Raises:
Exception: If any error occurs during memory creation.
"""
try:
memory_id = str(uuid.uuid4())
logging.info("Job id %s", job_id)
memory = MemoryModel(
id=memory_id,
user_id=user_id,
operation_id=job_id,
memory_name=memory_name,
memory_category=memory_category,
methods_list=str(["Memory", "SemanticMemory", "EpisodicMemory"]),
attributes_list=str(
[
"user_id",
"index_name",
"db_type",
"knowledge_source",
"knowledge_type",
"memory_id",
"long_term_memory",
"short_term_memory",
"namespace",
]
),
)
await add_entity(session, memory)
return memory_id
except Exception as e:
return f"Error creating memory: {str(e)}"
async def add_memory_instance(self, memory_class_name: str):
"""Add a new memory instance to the memory_instances list."""
instance = DynamicBaseMemory(
memory_class_name,
self.user_id,
self.memory_id,
self.index_name,
self.db_type,
self.namespace,
)
print("The following instance was defined", instance)
self.memory_instances.append(instance)
async def query_method(self):
methods_list = await self.session.execute(
select(MemoryModel.methods_list).where(MemoryModel.id == self.memory_id)
)
methods_list = methods_list.scalar_one_or_none()
return methods_list
async def manage_memory_attributes(self, existing_user):
"""Manage memory attributes based on the user existence."""
if existing_user:
print(f"ID before query: {self.memory_id}, type: {type(self.memory_id)}")
# attributes_list = await self.session.query(MemoryModel.attributes_list).filter_by(id=self.memory_id[0]).scalar()
attributes_list = await self.query_method()
logging.info(f"Attributes list: {attributes_list}")
if attributes_list is not None:
attributes_list = ast.literal_eval(attributes_list)
await self.handle_attributes(attributes_list)
else:
logging.warning("attributes_list is None!")
else:
attributes_list = [
"user_id",
"index_name",
"db_type",
"knowledge_source",
"knowledge_type",
"memory_id",
"long_term_memory",
"short_term_memory",
"namespace",
]
await self.handle_attributes(attributes_list)
async def handle_attributes(self, attributes_list):
"""Handle attributes for existing memory instances."""
for attr in attributes_list:
await self.memory_class.add_attribute(attr)
async def manage_memory_methods(self, existing_user):
"""
Manage memory methods based on the user existence.
"""
if existing_user:
# Fetch existing methods from the database
# methods_list = await self.session.query(MemoryModel.methods_list).filter_by(id=self.memory_id).scalar()
methods_list = await self.session.execute(
select(MemoryModel.methods_list).where(
MemoryModel.id == self.memory_id[0]
)
)
methods_list = methods_list.scalar_one_or_none()
methods_list = ast.literal_eval(methods_list)
else:
# Define default methods for a new user
methods_list = [
"async_create_long_term_memory",
"async_init",
"add_memories",
"fetch_memories",
"delete_memories",
"async_create_short_term_memory",
"_create_buffer_context",
"_get_task_list",
"_run_main_buffer",
"_available_operations",
"_provide_feedback",
]
# Apply methods to memory instances
for class_instance in self.memory_instances:
for method in methods_list:
class_instance.add_method(method)
async def dynamic_method_call(
self, dynamic_base_memory_instance, method_name: str, *args, **kwargs
):
if method_name in dynamic_base_memory_instance.methods:
method = getattr(dynamic_base_memory_instance, method_name, None)
if method:
return await method(*args, **kwargs)
raise AttributeError(
f"{dynamic_base_memory_instance.name} object has no attribute {method_name}"
)
async def add_dynamic_memory_class(self, class_name: str, namespace: str):
logging.info("Here is the memory id %s", self.memory_id[0])
new_memory_class = DynamicBaseMemory(
class_name,
self.user_id,
self.memory_id[0],
self.index_name,
self.db_type,
namespace,
)
setattr(self, f"{class_name.lower()}_class", new_memory_class)
return new_memory_class
async def add_attribute_to_class(self, class_instance, attribute_name: str):
# add this to database for a particular user and load under memory id
await class_instance.add_attribute(attribute_name)
async def add_method_to_class(self, class_instance, method_name: str):
# add this to database for a particular user and load under memory id
await class_instance.add_method(method_name)

View file

@ -0,0 +1 @@
from .create_vector_memory import create_vector_memory

View file

@ -0,0 +1,7 @@
from cognitive_architecture.infrastructure.databases.vector.qdrant.adapter import CollectionConfig
from cognitive_architecture.infrastructure.databases.vector.get_vector_database import get_vector_database
async def create_vector_memory(memory_name: str, collection_config: CollectionConfig):
vector_db = get_vector_database()
return await vector_db.create_collection(memory_name, collection_config)

View file

@ -0,0 +1,3 @@
from .is_existing_memory import is_existing_memory
from .register_memory_for_user import register_memory_for_user
from .create_information_points import create_information_points

View file

@ -0,0 +1,23 @@
import uuid
from typing import List
from qdrant_client.models import PointStruct
from cognitive_architecture.infrastructure.databases.vector.get_vector_database import get_vector_database
from cognitive_architecture.openai_tools import async_get_embedding_with_backoff
async def create_information_points(memory_name: str, payload: List[str]):
vector_db = get_vector_database()
data_points = list()
for point in map(create_data_point, payload):
data_points.append(await point)
return await vector_db.create_data_points(memory_name, data_points)
async def create_data_point(data: str) -> PointStruct:
return PointStruct(
id = str(uuid.uuid4()),
vector = await async_get_embedding_with_backoff(data),
payload = {
"raw": data,
}
)

View file

@ -0,0 +1,6 @@
from cognitive_architecture.infrastructure.databases.relational.get_database import get_database
async def is_existing_memory(memory_name: str):
memory = await (get_database().get_memory_by_name(memory_name))
return memory is not None

View file

@ -0,0 +1,4 @@
from cognitive_architecture.infrastructure.databases.relational.get_database import get_database
def register_memory_for_user(user_id: str, memory_name: str):
return get_database().add_memory(user_id, memory_name)

View file

@ -3,24 +3,21 @@ import asyncio
import random
import os
import time
import openai
HOST = os.getenv("OPENAI_API_BASE")
HOST_TYPE = os.getenv("BACKEND_TYPE") # default None == ChatCompletion
import openai
if HOST is not None:
openai.api_base = HOST
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 20,
errors: tuple = (openai.error.RateLimitError,),
errors: tuple = (openai.RateLimitError,),
):
"""Retry a function with exponential backoff."""
@ -35,7 +32,7 @@ def retry_with_exponential_backoff(
return func(*args, **kwargs)
# Retry on specified errors
except errors as e:
except errors:
# Increment retries
num_retries += 1
@ -61,7 +58,7 @@ def retry_with_exponential_backoff(
@retry_with_exponential_backoff
def completions_with_backoff(**kwargs):
# Local model
return openai.ChatCompletion.create(**kwargs)
return openai.chat.completions.create(**kwargs)
def aretry_with_exponential_backoff(
@ -70,7 +67,7 @@ def aretry_with_exponential_backoff(
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 20,
errors: tuple = (openai.error.RateLimitError,),
errors: tuple = (openai.RateLimitError,),
):
"""Retry a function with exponential backoff."""
@ -111,13 +108,19 @@ def aretry_with_exponential_backoff(
@aretry_with_exponential_backoff
async def acompletions_with_backoff(**kwargs):
return await openai.ChatCompletion.acreate(**kwargs)
return await openai.chat.completions.acreate(**kwargs)
@aretry_with_exponential_backoff
async def acreate_embedding_with_backoff(**kwargs):
"""Wrapper around Embedding.acreate w/ backoff"""
return await openai.Embedding.acreate(**kwargs)
client = openai.AsyncOpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
)
return await client.embeddings.create(**kwargs)
async def async_get_embedding_with_backoff(text, model="text-embedding-ada-002"):
@ -125,17 +128,17 @@ async def async_get_embedding_with_backoff(text, model="text-embedding-ada-002")
It specifies defaults + handles rate-limiting + is async"""
text = text.replace("\n", " ")
response = await acreate_embedding_with_backoff(input=[text], model=model)
embedding = response["data"][0]["embedding"]
embedding = response.data[0].embedding
return embedding
@retry_with_exponential_backoff
def create_embedding_with_backoff(**kwargs):
return openai.Embedding.create(**kwargs)
return openai.embeddings.create(**kwargs)
def get_embedding_with_backoff(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
response = create_embedding_with_backoff(input=[text], model=model)
embedding = response["data"][0]["embedding"]
embedding = response.data[0].embedding
return embedding

View file

@ -5,11 +5,11 @@ logger = logging.getLogger(__name__)
async def main():
"""Runs as a part of startup docker scripts to create the database and tables."""
from config import Config
from cognitive_architecture.config import Config
config = Config()
config.load()
from database.database_manager import DatabaseManager
from cognitive_architecture.database.database_manager import DatabaseManager
db_manager = DatabaseManager()
database_name = config.db_name

View file

@ -7,7 +7,7 @@ echo "Environment: $ENVIRONMENT"
if [ "$ENVIRONMENT" != "local" ]; then
echo "Running fetch_secret.py"
python cognitive_architecture/fetch_secret.py
PYTHONPATH=. python cognitive_architecture/fetch_secret.py
if [ $? -ne 0 ]; then
echo "Error: fetch_secret.py failed"
@ -19,7 +19,7 @@ fi
echo "Creating database..."
python cognitive_architecture/setup_database.py
PYTHONPATH=. python cognitive_architecture/setup_database.py
if [ $? -ne 0 ]; then
echo "Error: setup_database.py failed"
exit 1

5595
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -20,50 +20,30 @@ classifiers = [
python = "^3.10"
langchain = "^0.0.338"
nltk = "3.8.1"
openai = "1.3.3"
pinecone-client = "2.2.2"
python-dotenv = "1.0.0"
pyyaml = "6.0"
fastapi = "0.104.1"
uvicorn = "0.22.0"
pexpect = "^4.8.0"
boto3 = "^1.26.125"
gptcache = "^0.1.22"
gunicorn = "^20.1.0"
tiktoken = "^0.4.0"
spacy = "^3.5.3"
python-jose = "^3.3.0"
pypdf = "^3.12.0"
fastjsonschema = "^2.18.0"
marvin = "^1.3.0"
dlt = { version ="^0.3.8", extras = ["duckdb"]}
weaviate-client = "4.4b1"
python-multipart = "^0.0.6"
pymupdf = "^1.23.3"
psycopg2 = "^2.9.8"
llama-index = "^0.8.39.post2"
llama-hub = "^0.0.34"
sqlalchemy = "^2.0.21"
asyncpg = "^0.28.0"
dash = "^2.14.0"
unstructured = {extras = ["pdf"], version = "^0.10.23"}
sentence-transformers = "2.2.2"
torch = "2.0.*"
pdf2image = "^1.16.3"
instructor = "^0.3.4"
networkx = "^3.2.1"
graphviz = "^0.20.1"
greenlet = "^3.0.1"
neo4j = "^5.14.1"
grpcio = "^1.60.0"
langdetect = "^1.0.9"
iso639 = "^0.1.4"
debugpy = "^1.8.0"
lancedb = "^0.5.5"
pyarrow = "^15.0.0"
pylint = "^3.0.3"
aiosqlite = "^0.19.0"
qdrant-client = "^1.7.3"
aiosqlite = "^0.20.0"
pymupdf = "^1.23.25"
pandas = "^2.2.1"
greenlet = "^3.0.3"
[build-system]
requires = ["poetry-core"]