Merge pull request #6 from chinu0609/delete-last-acessed
fix: flag to enable and disable last_accessed
This commit is contained in:
commit
6ecf719632
3 changed files with 519 additions and 423 deletions
|
|
@ -1,46 +1,52 @@
|
|||
"""add_last_accessed_to_data
|
||||
|
||||
Revision ID: e1ec1dcb50b6
|
||||
Revises: 211ab850ef3d
|
||||
Create Date: 2025-11-04 21:45:52.642322
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = 'e1ec1dcb50b6'
|
||||
down_revision: Union[str, None] = '211ab850ef3d'
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
def _get_column(inspector, table, name, schema=None):
|
||||
for col in inspector.get_columns(table, schema=schema):
|
||||
if col["name"] == name:
|
||||
return col
|
||||
return None
|
||||
"""add_last_accessed_to_data
|
||||
|
||||
Revision ID: e1ec1dcb50b6
|
||||
Revises: 211ab850ef3d
|
||||
Create Date: 2025-11-04 21:45:52.642322
|
||||
|
||||
"""
|
||||
import os
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if not last_accessed_column:
|
||||
op.add_column('data',
|
||||
sa.Column('last_accessed', sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
# Optionally initialize with created_at values for existing records
|
||||
op.execute("UPDATE data SET last_accessed = CURRENT_TIMESTAMP")
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = 'e1ec1dcb50b6'
|
||||
down_revision: Union[str, None] = '211ab850ef3d'
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if last_accessed_column:
|
||||
def _get_column(inspector, table, name, schema=None):
|
||||
for col in inspector.get_columns(table, schema=schema):
|
||||
if col["name"] == name:
|
||||
return col
|
||||
return None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if not last_accessed_column:
|
||||
# Always create the column for schema consistency
|
||||
op.add_column('data',
|
||||
sa.Column('last_accessed', sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
|
||||
# Only initialize existing records if feature is enabled
|
||||
enable_last_accessed = os.getenv("ENABLE_LAST_ACCESSED", "false").lower() == "true"
|
||||
if enable_last_accessed:
|
||||
op.execute("UPDATE data SET last_accessed = CURRENT_TIMESTAMP")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if last_accessed_column:
|
||||
op.drop_column('data', 'last_accessed')
|
||||
|
|
|
|||
|
|
@ -4,92 +4,135 @@ import json
|
|||
from datetime import datetime, timezone
|
||||
from typing import List, Any
|
||||
from uuid import UUID
|
||||
|
||||
import os
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
from cognee.modules.data.models import Data
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from sqlalchemy import update
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def update_node_access_timestamps(items: List[Any]):
|
||||
"""
|
||||
Update last_accessed_at for nodes in graph database and corresponding Data records in SQL.
|
||||
|
||||
This function:
|
||||
1. Updates last_accessed_at in the graph database nodes (in properties JSON)
|
||||
2. Traverses to find origin TextDocument nodes (without hardcoded relationship names)
|
||||
3. Updates last_accessed in the SQL Data table for those documents
|
||||
|
||||
Parameters
|
||||
----------
|
||||
items : List[Any]
|
||||
List of items with payload containing 'id' field (from vector search results)
|
||||
"""
|
||||
if os.getenv("ENABLE_LAST_ACCESSED", "false").lower() != "true":
|
||||
return
|
||||
|
||||
if not items:
|
||||
return
|
||||
|
||||
|
||||
graph_engine = await get_graph_engine()
|
||||
timestamp_ms = int(datetime.now(timezone.utc).timestamp() * 1000)
|
||||
timestamp_dt = datetime.now(timezone.utc)
|
||||
|
||||
|
||||
# Extract node IDs
|
||||
node_ids = []
|
||||
for item in items:
|
||||
item_id = item.payload.get("id") if hasattr(item, 'payload') else item.get("id")
|
||||
if item_id:
|
||||
node_ids.append(str(item_id))
|
||||
|
||||
|
||||
if not node_ids:
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
# Step 1: Batch update graph nodes
|
||||
for node_id in node_ids:
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) RETURN n.properties",
|
||||
{"id": node_id}
|
||||
)
|
||||
|
||||
if result and result[0]:
|
||||
props = json.loads(result[0][0]) if result[0][0] else {}
|
||||
props["last_accessed_at"] = timestamp_ms
|
||||
|
||||
await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) SET n.properties = $props",
|
||||
{"id": node_id, "props": json.dumps(props)}
|
||||
)
|
||||
|
||||
logger.debug(f"Updated access timestamps for {len(node_ids)} graph nodes")
|
||||
|
||||
# Step 2: Find origin TextDocument nodes (without hardcoded relationship names)
|
||||
origin_query = """
|
||||
UNWIND $node_ids AS node_id
|
||||
MATCH (chunk:Node {id: node_id})-[e:EDGE]-(doc:Node)
|
||||
WHERE chunk.type = 'DocumentChunk' AND doc.type IN ['TextDocument', 'Document']
|
||||
RETURN DISTINCT doc.id
|
||||
"""
|
||||
|
||||
result = await graph_engine.query(origin_query, {"node_ids": node_ids})
|
||||
|
||||
# Extract and deduplicate document IDs
|
||||
doc_ids = list(set([row[0] for row in result if row and row[0]])) if result else []
|
||||
|
||||
# Step 3: Update SQL Data table
|
||||
if doc_ids:
|
||||
db_engine = get_relational_engine()
|
||||
async with db_engine.get_async_session() as session:
|
||||
stmt = update(Data).where(
|
||||
Data.id.in_([UUID(doc_id) for doc_id in doc_ids])
|
||||
).values(last_accessed=timestamp_dt)
|
||||
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
||||
|
||||
logger.debug(f"Updated last_accessed for {len(doc_ids)} Data records in SQL")
|
||||
|
||||
# Try to update nodes in graph database (may fail for unsupported DBs)
|
||||
await _update_nodes_via_projection(graph_engine, node_ids, timestamp_ms)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update timestamps: {e}")
|
||||
raise
|
||||
logger.warning(
|
||||
f"Failed to update node timestamps in graph database: {e}. "
|
||||
"Will update document-level timestamps in SQL instead."
|
||||
)
|
||||
|
||||
# Always try to find origin documents and update SQL
|
||||
# This ensures document-level tracking works even if graph updates fail
|
||||
try:
|
||||
doc_ids = await _find_origin_documents_via_projection(graph_engine, node_ids)
|
||||
if doc_ids:
|
||||
await _update_sql_records(doc_ids, timestamp_dt)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update SQL timestamps: {e}")
|
||||
raise
|
||||
|
||||
async def _update_nodes_via_projection(graph_engine, node_ids, timestamp_ms):
|
||||
"""Update nodes using graph projection - works with any graph database"""
|
||||
# Project the graph with necessary properties
|
||||
memory_fragment = CogneeGraph()
|
||||
await memory_fragment.project_graph_from_db(
|
||||
graph_engine,
|
||||
node_properties_to_project=["id"],
|
||||
edge_properties_to_project=[]
|
||||
)
|
||||
|
||||
# Update each node's last_accessed_at property
|
||||
provider = os.getenv("GRAPH_DATABASE_PROVIDER", "kuzu").lower()
|
||||
|
||||
for node_id in node_ids:
|
||||
node = memory_fragment.get_node(node_id)
|
||||
if node:
|
||||
try:
|
||||
# Update the node in the database
|
||||
if provider == "kuzu":
|
||||
# Kuzu stores properties as JSON
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) RETURN n.properties",
|
||||
{"id": node_id}
|
||||
)
|
||||
|
||||
if result and result[0]:
|
||||
props = json.loads(result[0][0]) if result[0][0] else {}
|
||||
props["last_accessed_at"] = timestamp_ms
|
||||
|
||||
await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) SET n.properties = $props",
|
||||
{"id": node_id, "props": json.dumps(props)}
|
||||
)
|
||||
elif provider == "neo4j":
|
||||
await graph_engine.query(
|
||||
"MATCH (n:__Node__ {id: $id}) SET n.last_accessed_at = $timestamp",
|
||||
{"id": node_id, "timestamp": timestamp_ms}
|
||||
)
|
||||
elif provider == "neptune":
|
||||
await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) SET n.last_accessed_at = $timestamp",
|
||||
{"id": node_id, "timestamp": timestamp_ms}
|
||||
)
|
||||
except Exception as e:
|
||||
# Log but continue with other nodes
|
||||
logger.debug(f"Failed to update node {node_id}: {e}")
|
||||
continue
|
||||
|
||||
async def _find_origin_documents_via_projection(graph_engine, node_ids):
|
||||
"""Find origin documents using graph projection instead of DB queries"""
|
||||
# Project the entire graph with necessary properties
|
||||
memory_fragment = CogneeGraph()
|
||||
await memory_fragment.project_graph_from_db(
|
||||
graph_engine,
|
||||
node_properties_to_project=["id", "type"],
|
||||
edge_properties_to_project=["relationship_name"]
|
||||
)
|
||||
|
||||
# Find origin documents by traversing the in-memory graph
|
||||
doc_ids = set()
|
||||
for node_id in node_ids:
|
||||
node = memory_fragment.get_node(node_id)
|
||||
if node and node.get_attribute("type") == "DocumentChunk":
|
||||
# Traverse edges to find connected documents
|
||||
for edge in node.get_skeleton_edges():
|
||||
# Get the neighbor node
|
||||
neighbor = edge.get_destination_node() if edge.get_source_node().id == node_id else edge.get_source_node()
|
||||
if neighbor and neighbor.get_attribute("type") in ["TextDocument", "Document"]:
|
||||
doc_ids.add(neighbor.id)
|
||||
|
||||
return list(doc_ids)
|
||||
|
||||
async def _update_sql_records(doc_ids, timestamp_dt):
|
||||
"""Update SQL Data table (same for all providers)"""
|
||||
db_engine = get_relational_engine()
|
||||
async with db_engine.get_async_session() as session:
|
||||
stmt = update(Data).where(
|
||||
Data.id.in_([UUID(doc_id) for doc_id in doc_ids])
|
||||
).values(last_accessed=timestamp_dt)
|
||||
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
||||
|
|
|
|||
|
|
@ -1,335 +1,382 @@
|
|||
"""
|
||||
Task for automatically deleting unused data from the memify pipeline.
|
||||
|
||||
This task identifies and removes data (chunks, entities, summaries) that hasn't
|
||||
been accessed by retrievers for a specified period, helping maintain system
|
||||
efficiency and storage optimization.
|
||||
"""
|
||||
|
||||
import json
|
||||
from datetime import datetime, timezone, timedelta
|
||||
from typing import Optional, Dict, Any
|
||||
from uuid import UUID
|
||||
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
from cognee.modules.data.models import Data, DatasetData
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from sqlalchemy import select, or_
|
||||
import cognee
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def cleanup_unused_data(
|
||||
days_threshold: Optional[int],
|
||||
dry_run: bool = True,
|
||||
user_id: Optional[UUID] = None,
|
||||
text_doc: bool = False
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Identify and remove unused data from the memify pipeline.
|
||||
"""
|
||||
Task for automatically deleting unused data from the memify pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
days_threshold : int
|
||||
days since last access to consider data unused
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted without actually deleting (default: True)
|
||||
user_id : UUID, optional
|
||||
Limit cleanup to specific user's data (default: None)
|
||||
text_doc : bool
|
||||
If True, use SQL-based filtering to find unused TextDocuments and call cognee.delete()
|
||||
for proper whole-document deletion (default: False)
|
||||
This task identifies and removes entire documents that haven't
|
||||
been accessed by retrievers for a specified period, helping maintain system
|
||||
efficiency and storage optimization through whole-document removal.
|
||||
"""
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results with status, counts, and timestamp
|
||||
"""
|
||||
logger.info(
|
||||
"Starting cleanup task",
|
||||
days_threshold=days_threshold,
|
||||
dry_run=dry_run,
|
||||
user_id=str(user_id) if user_id else None,
|
||||
text_doc=text_doc
|
||||
import json
|
||||
from datetime import datetime, timezone, timedelta
|
||||
from typing import Optional, Dict, Any
|
||||
from uuid import UUID
|
||||
import os
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
from cognee.modules.data.models import Data, DatasetData
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from sqlalchemy import select, or_
|
||||
import cognee
|
||||
import sqlalchemy as sa
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def cleanup_unused_data(
|
||||
minutes_threshold: Optional[int],
|
||||
dry_run: bool = True,
|
||||
user_id: Optional[UUID] = None,
|
||||
text_doc: bool = True, # Changed default to True for document-level cleanup
|
||||
node_level: bool = False # New parameter for explicit node-level cleanup
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Identify and remove unused data from the memify pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
minutes_threshold : int
|
||||
Minutes since last access to consider data unused
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted without actually deleting (default: True)
|
||||
user_id : UUID, optional
|
||||
Limit cleanup to specific user's data (default: None)
|
||||
text_doc : bool
|
||||
If True (default), use SQL-based filtering to find unused TextDocuments and call cognee.delete()
|
||||
for proper whole-document deletion
|
||||
node_level : bool
|
||||
If True, perform chaotic node-level deletion of unused chunks, entities, and summaries
|
||||
(default: False - deprecated in favor of document-level cleanup)
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results with status, counts, and timestamp
|
||||
"""
|
||||
# Check 1: Environment variable must be enabled
|
||||
if os.getenv("ENABLE_LAST_ACCESSED", "false").lower() != "true":
|
||||
logger.warning(
|
||||
"Cleanup skipped: ENABLE_LAST_ACCESSED is not enabled."
|
||||
)
|
||||
return {
|
||||
"status": "skipped",
|
||||
"reason": "ENABLE_LAST_ACCESSED not enabled",
|
||||
"unused_count": 0,
|
||||
"deleted_count": {},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
# Check 2: Verify tracking has actually been running
|
||||
db_engine = get_relational_engine()
|
||||
async with db_engine.get_async_session() as session:
|
||||
# Count records with non-NULL last_accessed
|
||||
tracked_count = await session.execute(
|
||||
select(sa.func.count(Data.id)).where(Data.last_accessed.isnot(None))
|
||||
)
|
||||
tracked_records = tracked_count.scalar()
|
||||
|
||||
if tracked_records == 0:
|
||||
logger.warning(
|
||||
"Cleanup skipped: No records have been tracked yet. "
|
||||
"ENABLE_LAST_ACCESSED may have been recently enabled. "
|
||||
"Wait for retrievers to update timestamps before running cleanup."
|
||||
)
|
||||
return {
|
||||
"status": "skipped",
|
||||
"reason": "No tracked records found - tracking may be newly enabled",
|
||||
"unused_count": 0,
|
||||
"deleted_count": {},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
logger.info(
|
||||
"Starting cleanup task",
|
||||
minutes_threshold=minutes_threshold,
|
||||
dry_run=dry_run,
|
||||
user_id=str(user_id) if user_id else None,
|
||||
text_doc=text_doc,
|
||||
node_level=node_level
|
||||
)
|
||||
|
||||
# Calculate cutoff timestamp
|
||||
cutoff_date = datetime.now(timezone.utc) - timedelta(minutes=minutes_threshold)
|
||||
|
||||
if node_level:
|
||||
# Deprecated: Node-level approach (chaotic)
|
||||
logger.warning(
|
||||
"Node-level cleanup is deprecated and may lead to fragmented knowledge graphs. "
|
||||
"Consider using document-level cleanup (default) instead."
|
||||
)
|
||||
cutoff_timestamp_ms = int(cutoff_date.timestamp() * 1000)
|
||||
logger.debug(f"Cutoff timestamp: {cutoff_date.isoformat()} ({cutoff_timestamp_ms}ms)")
|
||||
|
||||
# Find unused nodes using graph projection
|
||||
unused_nodes = await _find_unused_nodes_via_projection(cutoff_timestamp_ms)
|
||||
|
||||
total_unused = sum(len(nodes) for nodes in unused_nodes.values())
|
||||
logger.info(f"Found {total_unused} unused nodes", unused_nodes={k: len(v) for k, v in unused_nodes.items()})
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": 0,
|
||||
"entities": 0,
|
||||
"summaries": 0,
|
||||
"associations": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"chunks": len(unused_nodes["DocumentChunk"]),
|
||||
"entities": len(unused_nodes["Entity"]),
|
||||
"summaries": len(unused_nodes["TextSummary"])
|
||||
}
|
||||
}
|
||||
|
||||
# Delete unused nodes (provider-agnostic deletion)
|
||||
deleted_counts = await _delete_unused_nodes(unused_nodes)
|
||||
|
||||
logger.info("Cleanup completed", deleted_counts=deleted_counts)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": deleted_counts["DocumentChunk"],
|
||||
"entities": deleted_counts["Entity"],
|
||||
"summaries": deleted_counts["TextSummary"],
|
||||
"associations": deleted_counts["associations"]
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
else:
|
||||
# Default: Document-level approach (recommended)
|
||||
return await _cleanup_via_sql(cutoff_date, dry_run, user_id)
|
||||
|
||||
|
||||
async def _cleanup_via_sql(
|
||||
cutoff_date: datetime,
|
||||
dry_run: bool,
|
||||
user_id: Optional[UUID] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
SQL-based cleanup: Query Data table for unused documents and use cognee.delete().
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_date : datetime
|
||||
Cutoff date for last_accessed filtering
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted
|
||||
user_id : UUID, optional
|
||||
Filter by user ID if provided
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results
|
||||
"""
|
||||
db_engine = get_relational_engine()
|
||||
|
||||
async with db_engine.get_async_session() as session:
|
||||
# Query for Data records with old last_accessed timestamps
|
||||
query = select(Data, DatasetData).join(
|
||||
DatasetData, Data.id == DatasetData.data_id
|
||||
).where(
|
||||
or_(
|
||||
Data.last_accessed < cutoff_date,
|
||||
Data.last_accessed.is_(None)
|
||||
)
|
||||
)
|
||||
|
||||
if user_id:
|
||||
from cognee.modules.data.models import Dataset
|
||||
query = query.join(Dataset, DatasetData.dataset_id == Dataset.id).where(
|
||||
Dataset.owner_id == user_id
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
unused_data = result.all()
|
||||
|
||||
logger.info(f"Found {len(unused_data)} unused documents in SQL")
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"documents": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"documents": len(unused_data)
|
||||
}
|
||||
}
|
||||
|
||||
# Delete each document using cognee.delete()
|
||||
deleted_count = 0
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
user = await get_default_user() if user_id is None else None
|
||||
|
||||
for data, dataset_data in unused_data:
|
||||
try:
|
||||
await cognee.delete(
|
||||
data_id=data.id,
|
||||
dataset_id=dataset_data.dataset_id,
|
||||
mode="hard", # Use hard mode to also remove orphaned entities
|
||||
user=user
|
||||
)
|
||||
deleted_count += 1
|
||||
logger.info(f"Deleted document {data.id} from dataset {dataset_data.dataset_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete document {data.id}: {e}")
|
||||
|
||||
logger.info("Cleanup completed", deleted_count=deleted_count)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": deleted_count,
|
||||
"documents": deleted_count
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
|
||||
async def _find_unused_nodes_via_projection(cutoff_timestamp_ms: int) -> Dict[str, list]:
|
||||
"""
|
||||
Find unused nodes using graph projection - database-agnostic approach.
|
||||
NOTE: This function is deprecated as it leads to fragmented knowledge graphs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_timestamp_ms : int
|
||||
Cutoff timestamp in milliseconds since epoch
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, list]
|
||||
Dictionary mapping node types to lists of unused node IDs
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
|
||||
# Project the entire graph with necessary properties
|
||||
memory_fragment = CogneeGraph()
|
||||
await memory_fragment.project_graph_from_db(
|
||||
graph_engine,
|
||||
node_properties_to_project=["id", "type", "last_accessed_at"],
|
||||
edge_properties_to_project=[]
|
||||
)
|
||||
|
||||
# Calculate cutoff timestamp
|
||||
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days_threshold)
|
||||
|
||||
if text_doc:
|
||||
# SQL-based approach: Find unused TextDocuments and use cognee.delete()
|
||||
return await _cleanup_via_sql(cutoff_date, dry_run, user_id)
|
||||
else:
|
||||
# Graph-based approach: Find unused nodes directly from graph
|
||||
cutoff_timestamp_ms = int(cutoff_date.timestamp() * 1000)
|
||||
logger.debug(f"Cutoff timestamp: {cutoff_date.isoformat()} ({cutoff_timestamp_ms}ms)")
|
||||
|
||||
# Find unused nodes
|
||||
unused_nodes = await _find_unused_nodes(cutoff_timestamp_ms, user_id)
|
||||
|
||||
total_unused = sum(len(nodes) for nodes in unused_nodes.values())
|
||||
logger.info(f"Found {total_unused} unused nodes", unused_nodes={k: len(v) for k, v in unused_nodes.items()})
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": 0,
|
||||
"entities": 0,
|
||||
"summaries": 0,
|
||||
"associations": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"chunks": len(unused_nodes["DocumentChunk"]),
|
||||
"entities": len(unused_nodes["Entity"]),
|
||||
"summaries": len(unused_nodes["TextSummary"])
|
||||
}
|
||||
}
|
||||
|
||||
# Delete unused nodes
|
||||
deleted_counts = await _delete_unused_nodes(unused_nodes)
|
||||
|
||||
logger.info("Cleanup completed", deleted_counts=deleted_counts)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": deleted_counts["DocumentChunk"],
|
||||
"entities": deleted_counts["Entity"],
|
||||
"summaries": deleted_counts["TextSummary"],
|
||||
"associations": deleted_counts["associations"]
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
|
||||
async def _cleanup_via_sql(
|
||||
cutoff_date: datetime,
|
||||
dry_run: bool,
|
||||
user_id: Optional[UUID] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
SQL-based cleanup: Query Data table for unused documents and use cognee.delete().
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_date : datetime
|
||||
Cutoff date for last_accessed filtering
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted
|
||||
user_id : UUID, optional
|
||||
Filter by user ID if provided
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results
|
||||
"""
|
||||
db_engine = get_relational_engine()
|
||||
|
||||
async with db_engine.get_async_session() as session:
|
||||
# Query for Data records with old last_accessed timestamps
|
||||
query = select(Data, DatasetData).join(
|
||||
DatasetData, Data.id == DatasetData.data_id
|
||||
).where(
|
||||
or_(
|
||||
Data.last_accessed < cutoff_date,
|
||||
Data.last_accessed.is_(None)
|
||||
)
|
||||
)
|
||||
|
||||
if user_id:
|
||||
from cognee.modules.data.models import Dataset
|
||||
query = query.join(Dataset, DatasetData.dataset_id == Dataset.id).where(
|
||||
Dataset.owner_id == user_id
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
unused_data = result.all()
|
||||
|
||||
logger.info(f"Found {len(unused_data)} unused documents in SQL")
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"documents": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"documents": len(unused_data)
|
||||
}
|
||||
}
|
||||
|
||||
# Delete each document using cognee.delete()
|
||||
deleted_count = 0
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
user = await get_default_user() if user_id is None else None
|
||||
|
||||
for data, dataset_data in unused_data:
|
||||
try:
|
||||
await cognee.delete(
|
||||
data_id=data.id,
|
||||
dataset_id=dataset_data.dataset_id,
|
||||
mode="hard", # Use hard mode to also remove orphaned entities
|
||||
user=user
|
||||
)
|
||||
deleted_count += 1
|
||||
logger.info(f"Deleted document {data.id} from dataset {dataset_data.dataset_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete document {data.id}: {e}")
|
||||
|
||||
logger.info("Cleanup completed", deleted_count=deleted_count)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": deleted_count,
|
||||
"documents": deleted_count
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
|
||||
async def _find_unused_nodes(
|
||||
cutoff_timestamp_ms: int,
|
||||
user_id: Optional[UUID] = None
|
||||
) -> Dict[str, list]:
|
||||
"""
|
||||
Query Kuzu for nodes with old last_accessed_at timestamps.
|
||||
unused_nodes = {"DocumentChunk": [], "Entity": [], "TextSummary": []}
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_timestamp_ms : int
|
||||
Cutoff timestamp in milliseconds since epoch
|
||||
user_id : UUID, optional
|
||||
Filter by user ID if provided
|
||||
# Get all nodes from the projected graph
|
||||
all_nodes = memory_fragment.get_nodes()
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, list]
|
||||
Dictionary mapping node types to lists of unused node IDs
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
|
||||
# Query all nodes with their properties
|
||||
query = "MATCH (n:Node) RETURN n.id, n.type, n.properties"
|
||||
results = await graph_engine.query(query)
|
||||
|
||||
unused_nodes = {
|
||||
"DocumentChunk": [],
|
||||
"Entity": [],
|
||||
"TextSummary": []
|
||||
}
|
||||
|
||||
for node_id, node_type, props_json in results:
|
||||
# Only process tracked node types
|
||||
for node in all_nodes:
|
||||
node_type = node.get_attribute("type")
|
||||
if node_type not in unused_nodes:
|
||||
continue
|
||||
|
||||
# Check last_accessed_at property
|
||||
last_accessed = node.get_attribute("last_accessed_at")
|
||||
|
||||
# Parse properties JSON
|
||||
if props_json:
|
||||
try:
|
||||
props = json.loads(props_json)
|
||||
last_accessed = props.get("last_accessed_at")
|
||||
|
||||
# Check if node is unused (never accessed or accessed before cutoff)
|
||||
if last_accessed is None or last_accessed < cutoff_timestamp_ms:
|
||||
unused_nodes[node_type].append(node_id)
|
||||
logger.debug(
|
||||
f"Found unused {node_type}",
|
||||
node_id=node_id,
|
||||
last_accessed=last_accessed
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"Failed to parse properties for node {node_id}")
|
||||
continue
|
||||
if last_accessed is None or last_accessed < cutoff_timestamp_ms:
|
||||
unused_nodes[node_type].append(node.id)
|
||||
logger.debug(
|
||||
f"Found unused {node_type}",
|
||||
node_id=node.id,
|
||||
last_accessed=last_accessed
|
||||
)
|
||||
|
||||
return unused_nodes
|
||||
|
||||
|
||||
async def _delete_unused_nodes(unused_nodes: Dict[str, list]) -> Dict[str, int]:
|
||||
"""
|
||||
Delete unused nodes from graph and vector databases.
|
||||
async def _delete_unused_nodes(unused_nodes: Dict[str, list]) -> Dict[str, int]:
|
||||
"""
|
||||
Delete unused nodes from graph and vector databases.
|
||||
NOTE: This function is deprecated as it leads to fragmented knowledge graphs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
unused_nodes : Dict[str, list]
|
||||
Dictionary mapping node types to lists of node IDs to delete
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, int]
|
||||
Count of deleted items by type
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
deleted_counts = {
|
||||
"DocumentChunk": 0,
|
||||
"Entity": 0,
|
||||
"TextSummary": 0,
|
||||
"associations": 0
|
||||
}
|
||||
|
||||
# Count associations before deletion (using graph projection for consistency)
|
||||
if any(unused_nodes.values()):
|
||||
memory_fragment = CogneeGraph()
|
||||
await memory_fragment.project_graph_from_db(
|
||||
graph_engine,
|
||||
node_properties_to_project=["id"],
|
||||
edge_properties_to_project=[]
|
||||
)
|
||||
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
# Count edges from the in-memory graph
|
||||
for node_id in node_ids:
|
||||
node = memory_fragment.get_node(node_id)
|
||||
if node:
|
||||
# Count edges from the in-memory graph
|
||||
edge_count = len(node.get_skeleton_edges())
|
||||
deleted_counts["associations"] += edge_count
|
||||
|
||||
Parameters
|
||||
----------
|
||||
unused_nodes : Dict[str, list]
|
||||
Dictionary mapping node types to lists of node IDs to delete
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, int]
|
||||
Count of deleted items by type
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
deleted_counts = {
|
||||
"DocumentChunk": 0,
|
||||
"Entity": 0,
|
||||
"TextSummary": 0,
|
||||
"associations": 0
|
||||
}
|
||||
|
||||
# Count associations before deletion
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
# Delete from graph database (uses DETACH DELETE, so edges are automatically removed)
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} nodes from graph database")
|
||||
|
||||
# Delete nodes in batches (database-agnostic)
|
||||
await graph_engine.delete_nodes(node_ids)
|
||||
deleted_counts[node_type] = len(node_ids)
|
||||
|
||||
# Delete from vector database
|
||||
vector_collections = {
|
||||
"DocumentChunk": "DocumentChunk_text",
|
||||
"Entity": "Entity_name",
|
||||
"TextSummary": "TextSummary_text"
|
||||
}
|
||||
|
||||
|
||||
for node_type, collection_name in vector_collections.items():
|
||||
node_ids = unused_nodes[node_type]
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} embeddings from vector database")
|
||||
|
||||
try:
|
||||
if await vector_engine.has_collection(collection_name):
|
||||
await vector_engine.delete_data_points(
|
||||
collection_name,
|
||||
[str(node_id) for node_id in node_ids]
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting from vector collection {collection_name}: {e}")
|
||||
|
||||
# Count edges connected to these nodes
|
||||
for node_id in node_ids:
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id})-[r:EDGE]-() RETURN count(r)",
|
||||
{"id": node_id}
|
||||
)
|
||||
if result and len(result) > 0:
|
||||
deleted_counts["associations"] += result[0][0]
|
||||
|
||||
# Delete from graph database (uses DETACH DELETE, so edges are automatically removed)
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} nodes from graph database")
|
||||
|
||||
# Delete nodes in batches
|
||||
await graph_engine.delete_nodes(node_ids)
|
||||
deleted_counts[node_type] = len(node_ids)
|
||||
|
||||
# Delete from vector database
|
||||
vector_collections = {
|
||||
"DocumentChunk": "DocumentChunk_text",
|
||||
"Entity": "Entity_name",
|
||||
"TextSummary": "TextSummary_text"
|
||||
}
|
||||
|
||||
|
||||
for node_type, collection_name in vector_collections.items():
|
||||
node_ids = unused_nodes[node_type]
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} embeddings from vector database")
|
||||
|
||||
try:
|
||||
if await vector_engine.has_collection(collection_name):
|
||||
await vector_engine.delete_data_points(
|
||||
collection_name,
|
||||
[str(node_id) for node_id in node_ids]
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting from vector collection {collection_name}: {e}")
|
||||
|
||||
return deleted_counts
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue