Fix linter issues

This commit is contained in:
vasilije 2025-01-05 19:24:55 +01:00
parent 649fcf2ba8
commit 6dafe73a6b
7 changed files with 19 additions and 28 deletions

View file

@ -47,7 +47,7 @@ def get_permissions_router() -> APIRouter:
group_id=group.id, permission_id=permission_entity.id
)
)
except IntegrityError as e:
except IntegrityError:
raise EntityAlreadyExistsError(message="Group permission already exists.")
await db.session.commit()
@ -70,7 +70,7 @@ def get_permissions_router() -> APIRouter:
# Add association directly to the association table
stmt = insert(UserGroup).values(user_id=user_id, group_id=group_id)
await db.session.execute(stmt)
except IntegrityError as e:
except IntegrityError:
raise EntityAlreadyExistsError(message="User is already part of group.")
await db.session.commit()

View file

@ -87,7 +87,7 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
except litellm.exceptions.RateLimitError:
if self.retry_count >= self.MAX_RETRIES:
raise Exception(f"Rate limit exceeded and no more retries left.")
raise Exception("Rate limit exceeded and no more retries left.")
await exponential_backoff(self.retry_count)

View file

@ -1,5 +1,6 @@
from typing import AsyncGenerator
from fastapi import Depends
from contextlib import asynccontextmanager
from sqlalchemy.ext.asyncio import AsyncSession
from fastapi_users.db import SQLAlchemyUserDatabase
from cognee.infrastructure.databases.relational import get_relational_engine
@ -16,6 +17,6 @@ async def get_user_db(session: AsyncSession = Depends(get_async_session)):
yield SQLAlchemyUserDatabase(session, User)
from contextlib import asynccontextmanager
get_user_db_context = asynccontextmanager(get_user_db)

View file

@ -8,17 +8,19 @@ import hashlib
from datetime import datetime, timezone
import graphistry
import networkx as nx
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tiktoken
import nltk
import base64
import networkx as nx
from bokeh.io import output_file, save
from bokeh.plotting import figure, from_networkx
from bokeh.models import Circle, MultiLine, HoverTool, ColumnDataSource, Range1d
from bokeh.plotting import output_file, show
from bokeh.embed import file_html
from bokeh.resources import CDN
import cairosvg
import logging
from cognee.base_config import get_base_config
from cognee.infrastructure.databases.graph import get_graph_engine
@ -272,16 +274,7 @@ def extract_pos_tags(sentence):
return pos_tags
import networkx as nx
from bokeh.plotting import figure, output_file, show
from bokeh.models import Circle, MultiLine, HoverTool, Range1d
from bokeh.io import output_notebook
from bokeh.embed import file_html
from bokeh.resources import CDN
from bokeh.plotting import figure, from_networkx
import base64
import cairosvg
import logging
logging.basicConfig(level=logging.INFO)

View file

@ -49,7 +49,7 @@ async def get_graph_from_model_test():
for document_chunk in document_chunks:
document_chunk.contains.append(
Entity(
name=f"Entity",
name="Entity",
is_type=EntityType(
name="Type 1",
),

View file

@ -102,8 +102,6 @@ def test_prepare_nodes():
assert len(nodes_df) == 1
from unittest.mock import DEFAULT
def test_create_cognee_style_network_with_logo():
import networkx as nx

View file

@ -1,14 +1,19 @@
from deepeval.dataset import EvaluationDataset
from pydantic import BaseModel
import os
from typing import List, Type
from deepeval.test_case import LLMTestCase
import dotenv
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.base_config import get_base_config
import logging
logger = logging.getLogger(__name__)
dotenv.load_dotenv()
from cognee.infrastructure.llm.get_llm_client import get_llm_client
dataset = EvaluationDataset()
dataset.add_test_cases_from_json_file(
@ -39,9 +44,6 @@ print(dataset.goldens)
print(dataset)
import logging
logger = logging.getLogger(__name__)
class AnswerModel(BaseModel):
@ -78,9 +80,6 @@ async def run_cognify_base_rag():
pass
import os
from cognee.base_config import get_base_config
from cognee.infrastructure.databases.vector import get_vector_engine
async def cognify_search_base_rag(content: str, context: str):