Merge branch 'dev' into COG-475-local-file-endpoint-deletion

This commit is contained in:
Igor Ilic 2024-12-19 17:34:42 +01:00 committed by GitHub
commit 6cb7fef411
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 780 additions and 579 deletions

View file

@ -29,8 +29,17 @@ from cognee.tasks.repo_processor import (enrich_dependency_graph,
expand_dependency_graph,
get_repo_file_dependencies)
from cognee.tasks.storage import add_data_points
from cognee.base_config import get_base_config
from cognee.shared.data_models import MonitoringTool
monitoring = get_base_config().monitoring_tool
if monitoring == MonitoringTool.LANGFUSE:
from langfuse.decorators import observe
from cognee.tasks.summarization import summarize_code
logger = logging.getLogger("code_graph_pipeline")
update_status_lock = asyncio.Lock()
@ -62,7 +71,7 @@ async def code_graph_pipeline(datasets: Union[str, list[str]] = None, user: User
return await asyncio.gather(*awaitables)
@observe
async def run_pipeline(dataset: Dataset, user: User):
'''DEPRECATED: Use `run_code_graph_pipeline` instead. This function will be removed.'''
data_documents: list[Data] = await get_dataset_data(dataset_id = dataset.id)

View file

@ -10,7 +10,9 @@ class BaseConfig(BaseSettings):
monitoring_tool: object = MonitoringTool.LANGFUSE
graphistry_username: Optional[str] = os.getenv("GRAPHISTRY_USERNAME")
graphistry_password: Optional[str] = os.getenv("GRAPHISTRY_PASSWORD")
langfuse_public_key: Optional[str] = os.getenv("LANGFUSE_PUBLIC_KEY")
langfuse_secret_key: Optional[str] = os.getenv("LANGFUSE_SECRET_KEY")
langfuse_host: Optional[str] = os.getenv("LANGFUSE_HOST")
model_config = SettingsConfigDict(env_file = ".env", extra = "allow")
def to_dict(self) -> dict:

View file

@ -6,26 +6,31 @@ from typing import Type
import litellm
import instructor
from pydantic import BaseModel
from cognee.shared.data_models import MonitoringTool
from cognee.exceptions import InvalidValueError
from cognee.infrastructure.llm.llm_interface import LLMInterface
from cognee.infrastructure.llm.prompts import read_query_prompt
from cognee.base_config import get_base_config
if MonitoringTool.LANGFUSE:
from langfuse.decorators import observe
class OpenAIAdapter(LLMInterface):
name = "OpenAI"
model: str
api_key: str
api_version: str
"""Adapter for OpenAI's GPT-3, GPT=4 API"""
def __init__(
self,
api_key: str,
endpoint: str,
api_version: str,
model: str,
transcription_model: str,
streaming: bool = False,
self,
api_key: str,
endpoint: str,
api_version: str,
model: str,
transcription_model: str,
streaming: bool = False,
):
self.aclient = instructor.from_litellm(litellm.acompletion)
self.client = instructor.from_litellm(litellm.completion)
@ -35,13 +40,18 @@ class OpenAIAdapter(LLMInterface):
self.endpoint = endpoint
self.api_version = api_version
self.streaming = streaming
base_config = get_base_config()
@observe()
async def acreate_structured_output(self, text_input: str, system_prompt: str,
response_model: Type[BaseModel]) -> BaseModel:
async def acreate_structured_output(self, text_input: str, system_prompt: str, response_model: Type[BaseModel]) -> BaseModel:
"""Generate a response from a user query."""
return await self.aclient.chat.completions.create(
model = self.model,
messages = [{
model=self.model,
messages=[{
"role": "user",
"content": f"""Use the given format to
extract information from the following input: {text_input}. """,
@ -49,19 +59,21 @@ class OpenAIAdapter(LLMInterface):
"role": "system",
"content": system_prompt,
}],
api_key = self.api_key,
api_base = self.endpoint,
api_version = self.api_version,
response_model = response_model,
max_retries = 5,
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
response_model=response_model,
max_retries=5,
)
def create_structured_output(self, text_input: str, system_prompt: str, response_model: Type[BaseModel]) -> BaseModel:
@observe
def create_structured_output(self, text_input: str, system_prompt: str,
response_model: Type[BaseModel]) -> BaseModel:
"""Generate a response from a user query."""
return self.client.chat.completions.create(
model = self.model,
messages = [{
model=self.model,
messages=[{
"role": "user",
"content": f"""Use the given format to
extract information from the following input: {text_input}. """,
@ -69,11 +81,11 @@ class OpenAIAdapter(LLMInterface):
"role": "system",
"content": system_prompt,
}],
api_key = self.api_key,
api_base = self.endpoint,
api_version = self.api_version,
response_model = response_model,
max_retries = 5,
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
response_model=response_model,
max_retries=5,
)
def create_transcript(self, input):
@ -86,12 +98,12 @@ class OpenAIAdapter(LLMInterface):
# audio_data = audio_file.read()
transcription = litellm.transcription(
model = self.transcription_model,
file = Path(input),
model=self.transcription_model,
file=Path(input),
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
max_retries = 5,
max_retries=5,
)
return transcription
@ -101,8 +113,8 @@ class OpenAIAdapter(LLMInterface):
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
return litellm.completion(
model = self.model,
messages = [{
model=self.model,
messages=[{
"role": "user",
"content": [
{
@ -119,8 +131,8 @@ class OpenAIAdapter(LLMInterface):
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
max_tokens = 300,
max_retries = 5,
max_tokens=300,
max_retries=5,
)
def show_prompt(self, text_input: str, system_prompt: str) -> str:
@ -132,4 +144,4 @@ class OpenAIAdapter(LLMInterface):
system_prompt = read_query_prompt(system_prompt)
formatted_prompt = f"""System Prompt:\n{system_prompt}\n\nUser Input:\n{text_input}\n""" if system_prompt else None
return formatted_prompt
return formatted_prompt

View file

@ -1,10 +1,11 @@
from typing import Type
import os
from pydantic import BaseModel
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from cognee.shared.data_models import SummarizedCode
from cognee.shared.data_models import SummarizedCode, SummarizedClass, SummarizedFunction
from cognee.tasks.summarization.mock_summary import get_mock_summarized_code
async def extract_summary(content: str, response_model: Type[BaseModel]):
@ -17,5 +18,14 @@ async def extract_summary(content: str, response_model: Type[BaseModel]):
return llm_output
async def extract_code_summary(content: str):
return await extract_summary(content, response_model=SummarizedCode)
enable_mocking = os.getenv("MOCK_CODE_SUMMARY", "false")
if isinstance(enable_mocking, bool):
enable_mocking = str(enable_mocking).lower()
enable_mocking = enable_mocking in ("true", "1", "yes")
if enable_mocking:
result = get_mock_summarized_code()
return result
else:
result = await extract_summary(content, response_model=SummarizedCode)
return result

View file

@ -73,7 +73,7 @@ async def get_repo_file_dependencies(repo_path: str) -> AsyncGenerator[list, Non
yield repo
with ProcessPoolExecutor() as executor:
with ProcessPoolExecutor(max_workers = 12) as executor:
loop = asyncio.get_event_loop()
tasks = [

View file

@ -0,0 +1,37 @@
from cognee.shared.data_models import SummarizedCode, SummarizedClass, SummarizedFunction
def get_mock_summarized_code() -> SummarizedCode:
return SummarizedCode(
file_name="mock_file.py",
high_level_summary="This is a mock high-level summary.",
key_features=["Mock feature 1", "Mock feature 2"],
imports=["mock_import1", "mock_import2"],
constants=["MOCK_CONSTANT = 'mock_value'"],
classes=[
SummarizedClass(
name="MockClass",
description="This is a mock description of the MockClass.",
methods=[
SummarizedFunction(
name="mock_method",
description="This is a description of the mock method.",
docstring="This is a mock method.",
inputs=["mock_input: str"],
outputs=["mock_output: str"],
decorators=None,
)
],
)
],
functions=[
SummarizedFunction(
name="mock_function",
description="This is a description of the mock function.",
docstring="This is a mock function.",
inputs=["mock_input: str"],
outputs=["mock_output: str"],
decorators=None,
)
],
workflow_description="This is a mock workflow description.",
)

View file

@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluation on the hotpotQA dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from evals.eval_on_hotpot import eval_on_hotpotQA\n",
"from evals.eval_on_hotpot import answer_with_cognee\n",
"from evals.eval_on_hotpot import answer_without_cognee\n",
"from evals.eval_on_hotpot import eval_answers\n",
"from cognee.base_config import get_base_config\n",
"from pathlib import Path\n",
"from tqdm import tqdm\n",
"import wget\n",
"import json\n",
"import statistics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Getting the answers for the first num_samples questions of the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"answer_provider = answer_with_cognee # For native LLM answers use answer_without_cognee\n",
"num_samples = 10 # With cognee, it takes ~1m10s per sample\n",
"\n",
"base_config = get_base_config()\n",
"data_root_dir = base_config.data_root_directory\n",
"\n",
"if not Path(data_root_dir).exists():\n",
" Path(data_root_dir).mkdir()\n",
"\n",
"filepath = data_root_dir / Path(\"hotpot_dev_fullwiki_v1.json\")\n",
"if not filepath.exists():\n",
" url = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json'\n",
" wget.download(url, out=data_root_dir)\n",
"\n",
"with open(filepath, \"r\") as file:\n",
" dataset = json.load(file)\n",
"\n",
"instances = dataset if not num_samples else dataset[:num_samples]\n",
"answers = []\n",
"for instance in tqdm(instances, desc=\"Getting answers\"):\n",
" answer = await answer_provider(instance)\n",
" answers.append(answer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating the official HotpotQA benchmark metrics: F1 score and EM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from evals.deepeval_metrics import f1_score_metric\n",
"from evals.deepeval_metrics import em_score_metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f1_metric = f1_score_metric()\n",
"eval_results = await eval_answers(instances, answers, f1_metric)\n",
"avg_f1_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n",
"print(\"F1 score: \", avg_f1_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"em_metric = em_score_metric()\n",
"eval_results = await eval_answers(instances, answers, em_metric)\n",
"avg_em_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n",
"print(\"EM score: \", avg_em_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating a custom metric called Correctness\n",
"##### Correctness is judged by an LLM"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from evals.deepeval_metrics import correctness_metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_results = await eval_answers(instances, answers, correctness_metric) # note that instantiation is not needed for correctness metric as it is already an instance\n",
"avg_correctness_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n",
"print(\"Correctness score: \", avg_correctness_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a metric from Deepeval"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from deepeval.metrics import AnswerRelevancyMetric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"relevancy_metric = AnswerRelevancyMetric()\n",
"eval_results = await eval_answers(instances, answers, relevancy_metric) # note that instantiation is not needed for correctness metric as it is already an instance\n",
"avg_relevancy_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n",
"print(\"Relevancy score: \", avg_relevancy_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Answering and eval in one step"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"answer_provider = answer_without_cognee\n",
"f1_metric = f1_score_metric()\n",
"f1_score = await eval_on_hotpotQA(answer_provider, num_samples=10, eval_metric=f1_metric) # takes ~1m10s per sample\n",
"print(\"F1 score: \", f1_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.20"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

989
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -46,7 +46,7 @@ aiofiles = "^23.2.1"
qdrant-client = {version = "^1.9.0", optional = true}
graphistry = "^0.33.5"
tenacity = "^8.4.1"
weaviate-client = {version = "4.6.7", optional = true}
weaviate-client = {version = "4.9.6", optional = true}
scikit-learn = "^1.5.0"
pypdf = "^4.1.0"
neo4j = {version = "^5.20.0", optional = true}
@ -60,7 +60,7 @@ posthog = {version = "^3.5.0", optional = true}
lancedb = "0.15.0"
litellm = "1.49.1"
groq = {version = "0.8.0", optional = true}
langfuse = {version = "^2.32.0", optional = true}
langfuse = "^2.32.0"
pydantic-settings = "^2.2.1"
anthropic = "^0.26.1"
sentry-sdk = {extras = ["fastapi"], version = "^2.9.0"}
@ -74,6 +74,7 @@ deepeval = {version = "^2.0.1", optional = true}
transformers = "^4.46.3"
pymilvus = {version = "^2.5.0", optional = true}
unstructured = { extras = ["csv", "doc", "docx", "epub", "md", "odt", "org", "ppt", "pptx", "rst", "rtf", "tsv", "xlsx"], version = "^0.16.10", optional = true }
httpx = "0.27.0"