Update docs
This commit is contained in:
parent
32bc4e7ef1
commit
6b5ffd139f
3 changed files with 65 additions and 1 deletions
11
README.md
11
README.md
|
|
@ -112,6 +112,17 @@ poetry add cognee
|
|||
Check out our demo notebook [here](cognee%20-%20Get%20Started.ipynb)
|
||||
|
||||
|
||||
- Set OpenAI API Key as an environment variable
|
||||
```
|
||||
import os
|
||||
|
||||
# Setting an environment variable
|
||||
os.environ['OPENAI_API_KEY'] = ''
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
- Add a new piece of information to storage
|
||||
```
|
||||
import cognee
|
||||
|
|
|
|||
|
|
@ -539,6 +539,8 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"from cognee import search\n",
|
||||
"from cognee.api.v1.search.search import SearchType\n",
|
||||
"query_params = {\n",
|
||||
" SearchType.SIMILARITY: {'query': 'your search query here'}\n",
|
||||
"}\n",
|
||||
|
|
|
|||
|
|
@ -36,6 +36,57 @@ We leverage Neo4j to do the heavy lifting and dlt to load the data, and we've bu
|
|||
pip install -U cognee
|
||||
|
||||
```
|
||||
Set OpenAI API Key as an environment variable
|
||||
|
||||
|
||||
```
|
||||
import os
|
||||
|
||||
# Setting an environment variable
|
||||
os.environ['OPENAI_API_KEY'] = ''
|
||||
|
||||
|
||||
```
|
||||
|
||||
Import cognee and start using it
|
||||
|
||||
|
||||
```
|
||||
import cognee
|
||||
from os import listdir, path
|
||||
from cognee import add
|
||||
|
||||
data_path = path.abspath(".data")
|
||||
|
||||
results = await add(data_path, "izmene")
|
||||
for result in results:
|
||||
print(result)
|
||||
|
||||
```
|
||||
|
||||
Run the following command to see the graph.
|
||||
Make sure to add your Graphistry credentials to .env beforehand
|
||||
|
||||
```
|
||||
from cognee.utils import render_graph
|
||||
|
||||
graph = await cognee.cognify("izmene")
|
||||
graph_url = await render_graph(graph, graph_type = "networkx")
|
||||
print(graph_url)
|
||||
```
|
||||
|
||||
|
||||
Search the graph for a piece of information
|
||||
|
||||
```
|
||||
from cognee import search
|
||||
from cognee.api.v1.search.search import SearchType
|
||||
query_params = {
|
||||
SearchType.SIMILARITY: {'query': 'your search query here'}
|
||||
}
|
||||
out = await search(graph, query_params)
|
||||
```
|
||||
|
||||
|
||||
|
||||
[//]: # (You can also check out our [cookbook](./examples/index.md) to learn more about how to use cognee.)
|
||||
|
|
@ -48,7 +99,7 @@ pip install -U cognee
|
|||
The question of using cognee is fundamentally a question of why to structure data inputs and outputs for your llm workflows.
|
||||
|
||||
|
||||
1. **Cost effective** — With our upcoming opensource release, cognee will extend the capabilities of your LLMs without the need for expensive data processing tools.
|
||||
1. **Cost effective** — cognee extends the capabilities of your LLMs without the need for expensive data processing tools.
|
||||
|
||||
|
||||
2. **Self contained** — cognee runs as a library and is simple to use
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue