Rerun notebooks with latest cognee - 0.3.5 (#1517)

<!-- .github/pull_request_template.md -->

## Description
<!--
Please provide a clear, human-generated description of the changes in
this PR.
DO NOT use AI-generated descriptions. We want to understand your thought
process and reasoning.
-->

Re-run notebooks:
1. validate notebooks work with latest 0.3.5 version
2. Override outputs that contained "Acknowledged" (old gpt-5 bug)

## Type of Change
<!-- Please check the relevant option -->
- [ ] Bug fix (non-breaking change that fixes an issue)
- [ ] New feature (non-breaking change that adds functionality)
- [ ] Breaking change (fix or feature that would cause existing
functionality to change)
- [ ] Documentation update
- [ ] Code refactoring
- [ ] Performance improvement
- [ ] Other (please specify):

## Screenshots/Videos (if applicable)
<!-- Add screenshots or videos to help explain your changes -->

## Pre-submission Checklist
<!-- Please check all boxes that apply before submitting your PR -->
- [ ] **I have tested my changes thoroughly before submitting this PR**
- [ ] **This PR contains minimal changes necessary to address the
issue/feature**
- [ ] My code follows the project's coding standards and style
guidelines
- [ ] I have added tests that prove my fix is effective or that my
feature works
- [ ] I have added necessary documentation (if applicable)
- [ ] All new and existing tests pass
- [ ] I have searched existing PRs to ensure this change hasn't been
submitted already
- [ ] I have linked any relevant issues in the description
- [ ] My commits have clear and descriptive messages

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.
This commit is contained in:
Vasilije 2025-10-12 10:24:41 +02:00 committed by GitHub
commit 666204d0db
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 1582 additions and 1481 deletions

File diff suppressed because it is too large Load diff

View file

@ -22,7 +22,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-30T11:54:44.613431Z",
@ -57,7 +57,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-30T11:54:46.739157Z",
@ -97,6 +97,38 @@
"# os.environ[\"DB_PASSWORD\"]=\"cognee\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-10-07T20:37:13.488510\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted old log file: /Users/daulet/Desktop/dev/cognee-claude/logs/2025-10-07_21-16-23.log\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-10-07T20:37:14.172414\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLogging initialized \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m \u001b[36mcognee_version\u001b[0m=\u001b[35m0.3.5-local\u001b[0m \u001b[36mdatabase_path\u001b[0m=\u001b[35m/Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m \u001b[36mgraph_database_name\u001b[0m=\u001b[35m\u001b[0m \u001b[36mos_info\u001b[0m=\u001b[35m'Darwin 24.5.0 (Darwin Kernel Version 24.5.0: Tue Apr 22 19:54:43 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T8132)'\u001b[0m \u001b[36mpython_version\u001b[0m=\u001b[35m3.10.11\u001b[0m \u001b[36mrelational_config\u001b[0m=\u001b[35mcognee_db\u001b[0m \u001b[36mstructlog_version\u001b[0m=\u001b[35m25.4.0\u001b[0m \u001b[36mvector_config\u001b[0m=\u001b[35mlancedb\u001b[0m\n",
"\n",
"\u001b[2m2025-10-07T20:37:14.172932\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase storage: /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"/Users/daulet/Desktop/dev/cognee-claude/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.3.5-local\n"
]
}
],
"source": [
"import cognee\n",
"print(cognee.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -114,31 +146,24 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T14:33:41.256195\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted old log file: /Users/daulet/Desktop/dev/cognee-claude/logs/2025-08-27_14-00-27.log\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"/Users/daulet/Desktop/dev/cognee-claude/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"\u001b[2m2025-10-07T20:37:20.743332\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLoaded JSON extension \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:42.133224\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLogging initialized \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m \u001b[36mcognee_version\u001b[0m=\u001b[35m0.2.4-local\u001b[0m \u001b[36mdatabase_path\u001b[0m=\u001b[35m/Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m \u001b[36mgraph_database_name\u001b[0m=\u001b[35m\u001b[0m \u001b[36mos_info\u001b[0m=\u001b[35m'Darwin 24.5.0 (Darwin Kernel Version 24.5.0: Tue Apr 22 19:54:43 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T8132)'\u001b[0m \u001b[36mpython_version\u001b[0m=\u001b[35m3.12.7\u001b[0m \u001b[36mrelational_config\u001b[0m=\u001b[35mcognee_db\u001b[0m \u001b[36mstructlog_version\u001b[0m=\u001b[35m25.4.0\u001b[0m \u001b[36mvector_config\u001b[0m=\u001b[35mlancedb\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:20.776490\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted Kuzu database files at /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases/cognee_graph_kuzu\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:42.133667\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase storage: /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:23.387773\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase deleted successfully.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:43.785214\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted Kuzu database files at /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases/cognee_graph_kuzu\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\u001b[1mStorage manager absolute path: /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_cache\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:44.215920\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase deleted successfully.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\u001b[1mDeleting cache... \u001b[0m\n",
"\n",
"\u001b[1mLangfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client\u001b[0m\n",
"\u001b[92m15:33:44 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n"
"\u001b[1m✓ Cache deleted successfully! \u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"User 37ea34fa-cae7-4bea-8cb3-1ba234688771 has registered.\n"
"User 03f552c1-331f-40b2-a99b-b3b05aa93e0d has registered.\n"
]
},
{
@ -148,164 +173,131 @@
"\n",
"\u001b[1mEmbeddingRateLimiter initialized: enabled=False, requests_limit=60, interval_seconds=60\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:50.440270\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `017311b3-90e5-53ce-9974-00c4d9551248`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.691142\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:50.690756\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.691670\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:50.996600\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.692087\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:51.287352\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: pypdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.693388\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:51.287759\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: text_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.693668\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:51.288078\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: image_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.694024\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:51.288341\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: audio_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.708303\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: pypdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:51.288576\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: unstructured_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[92m15:33:52 - LiteLLM:INFO\u001b[0m: utils.py:1274 - Wrapper: Completed Call, calling success_handler\n",
"\u001b[2m2025-10-07T20:37:24.708776\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: text_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1mWrapper: Completed Call, calling success_handler\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.709084\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: image_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:52.455447\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.709426\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: audio_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:52.599686\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.709654\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: unstructured_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:52.806593\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `017311b3-90e5-53ce-9974-00c4d9551248`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:24.709898\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: advanced_pdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:53.075106\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `017311b3-90e5-53ce-9974-00c4d9551248`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.420233\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:53.209912\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.420796\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:53.355890\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m15:33:53 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:37:28.421255\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m15:33:57 - LiteLLM:INFO\u001b[0m: utils.py:1274 - Wrapper: Completed Call, calling success_handler\n",
"\u001b[2m2025-10-07T20:37:28.423491\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1mWrapper: Completed Call, calling success_handler\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.423881\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:57.407561\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.424259\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:57.560808\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.434168\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'None' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:57.713507\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `017311b3-90e5-53ce-9974-00c4d9551248`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.453069\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:57.897060\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'None' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.453489\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:57.938027\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `9bd0d908-8e9e-5780-b4c2-09fc8d471f1b`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.453823\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:58.093101\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.454419\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:58.255165\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.454689\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:58.428623\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.454948\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:33:58.588682\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m15:33:58 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:37:28.462413\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.466745\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.706892\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.470294\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.707703\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'programmer' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:28.476006\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.708083\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'object' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.030103\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLoaded JSON extension \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.708440\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'light bulb' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.065148\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.708802\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.065868\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'programmer' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.709129\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hardware problem' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.066315\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'object' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:19.709475\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'how many programmers does it take to change a light bulb? none, thats a hardware problem.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.066713\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'light bulb' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:24.553989\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m15:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:37:32.067064\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.067410\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hardware problem' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:32.883579\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.202761\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'profession' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:35.680233\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.203355\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'programmers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:35.825933\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.203785\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hardware' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:35.975352\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.204225\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'light bulb' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.126720\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.204544\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.275404\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:32.204964\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'humor' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.424984\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:34.265785\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.576258\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `9bd0d908-8e9e-5780-b4c2-09fc8d471f1b`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:35.003525\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.754472\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `9bd0d908-8e9e-5780-b4c2-09fc8d471f1b`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:35.952187\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:36.912219\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:35.970171\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:37.053036\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.024476\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:37.220157\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.025311\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:34:37.388094\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m15:34:37 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:37:38.025564\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.025803\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.010321\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.026065\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.012394\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'programmers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.026413\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.012794\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'object' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.026663\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.013111\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'light bulb' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.680393\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.013378\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.680986\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.013598\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hardware problem' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.681355\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.013914\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'joke' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.681647\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:00.014215\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'programmer joke' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:38.681917\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:02.040520\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m15:35:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:37:38.682229\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:11.589828\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:14.446614\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:14.622281\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:14.820192\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:15.004173\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:15.518803\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:15.756519\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:35:15.978364\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `9bd0d908-8e9e-5780-b4c2-09fc8d471f1b`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n"
"\u001b[2m2025-10-07T20:37:38.682567\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{UUID('a08926db-6319-5cd9-adc9-2cf9dfbc75e0'): PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('69b78d3d-4d27-5d9f-918f-57e77b3cb10a'), dataset_id=UUID('a08926db-6319-5cd9-adc9-2cf9dfbc75e0'), dataset_name='main_dataset', payload=None, data_ingestion_info=[{'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('69b78d3d-4d27-5d9f-918f-57e77b3cb10a'), dataset_id=UUID('a08926db-6319-5cd9-adc9-2cf9dfbc75e0'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('17b5c469-a8ce-5347-bea5-ab3dba767d13')}, {'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('69b78d3d-4d27-5d9f-918f-57e77b3cb10a'), dataset_id=UUID('a08926db-6319-5cd9-adc9-2cf9dfbc75e0'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('5b1e3c7e-d837-5704-a3b3-53abdda3a84f')}])}"
"{UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'): PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=[{'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('56c22102-965d-592e-958c-c1ebebf0008f')}, {'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('e26acfac-f1c2-5d9d-b95a-e970a75aedde')}])}"
]
},
"execution_count": 4,
@ -349,23 +341,29 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T14:36:09.273837\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mStarting completion generation for query: 'What is in the multimedia files?'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:42.668682\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mStarting summary retrieval for query: 'What is in the multimedia files?'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T14:36:09.275355\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mStarting summary retrieval for query: 'What is in the multimedia files?'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:42.933137\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mFound 2 summaries from vector search\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:36:09.691101\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mFound 2 summaries from vector search\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:42.933995\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mReturning 2 summary payloads \u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:36:09.691827\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mReturning 2 summary payloads \u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:37:42.934301\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mStarting completion generation for query: 'What is in the multimedia files?'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T14:36:09.692207\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mReturning context with 2 item(s)\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n"
"\u001b[2m2025-10-07T20:37:42.934604\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mReturning context with 2 item(s)\u001b[0m [\u001b[0m\u001b[1m\u001b[34mSummariesRetriever\u001b[0m]\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'id': 'facab42e-12fc-557e-aaf4-09c02ae1cd4f', 'created_at': 1756305273061, 'updated_at': 1756305273061, 'ontology_valid': False, 'version': 1, 'topological_rank': 0, 'type': 'IndexSchema', 'text': \"Programmers won't change a light bulb — it's considered a hardware issue.\"}\n",
"{'id': '958f2bc9-060b-5500-b14a-19b300cc99aa', 'created_at': 1756305311791, 'updated_at': 1756305311791, 'ontology_valid': False, 'version': 1, 'topological_rank': 0, 'type': 'IndexSchema', 'text': 'One-line programmer joke: changing a light bulb is labeled a hardware issue.'}\n"
"{'id': '766ac5d6-1a81-530e-a934-61e2bf505d9b', 'created_at': 1759869455990, 'updated_at': 1759869455990, 'ontology_valid': False, 'version': 1, 'topological_rank': 0, 'type': 'IndexSchema', 'text': 'A humorous take on programmers and light bulbs.'}\n",
"{'id': '2862798a-0dfc-5994-a3ca-9f4329f42f06', 'created_at': 1759869455989, 'updated_at': 1759869455989, 'ontology_valid': False, 'version': 1, 'topological_rank': 0, 'type': 'IndexSchema', 'text': \"Programmers won't change a light bulb.\"}\n"
]
}
],
@ -429,7 +427,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
"version": "3.10.11"
}
},
"nbformat": 4,

View file

@ -79,580 +79,246 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T13:34:14.905059\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted old log file: /Users/daulet/Desktop/dev/cognee-claude/logs/2025-08-26_12-44-42.log\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"/Users/daulet/Desktop/dev/cognee-claude/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"\u001b[2m2025-10-07T20:38:23.321871\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted old log file: /Users/daulet/Desktop/dev/cognee-claude/logs/2025-10-07_21-16-35.log\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:15.858104\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLogging initialized \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m \u001b[36mcognee_version\u001b[0m=\u001b[35m0.2.4-local\u001b[0m \u001b[36mdatabase_path\u001b[0m=\u001b[35m/Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m \u001b[36mgraph_database_name\u001b[0m=\u001b[35m\u001b[0m \u001b[36mos_info\u001b[0m=\u001b[35m'Darwin 24.5.0 (Darwin Kernel Version 24.5.0: Tue Apr 22 19:54:43 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T8132)'\u001b[0m \u001b[36mpython_version\u001b[0m=\u001b[35m3.12.7\u001b[0m \u001b[36mrelational_config\u001b[0m=\u001b[35mcognee_db\u001b[0m \u001b[36mstructlog_version\u001b[0m=\u001b[35m25.4.0\u001b[0m \u001b[36mvector_config\u001b[0m=\u001b[35mlancedb\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:23.924664\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLogging initialized \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m \u001b[36mcognee_version\u001b[0m=\u001b[35m0.3.5-local\u001b[0m \u001b[36mdatabase_path\u001b[0m=\u001b[35m/Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m \u001b[36mgraph_database_name\u001b[0m=\u001b[35m\u001b[0m \u001b[36mos_info\u001b[0m=\u001b[35m'Darwin 24.5.0 (Darwin Kernel Version 24.5.0: Tue Apr 22 19:54:43 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T8132)'\u001b[0m \u001b[36mpython_version\u001b[0m=\u001b[35m3.10.11\u001b[0m \u001b[36mrelational_config\u001b[0m=\u001b[35mcognee_db\u001b[0m \u001b[36mstructlog_version\u001b[0m=\u001b[35m25.4.0\u001b[0m \u001b[36mvector_config\u001b[0m=\u001b[35mlancedb\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:15.859638\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase storage: /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1mLangfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client\u001b[0m\n",
"\u001b[92m14:34:18 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:23.925152\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase storage: /Users/daulet/Desktop/dev/cognee-claude/cognee/.cognee_system/databases\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"/Users/daulet/Desktop/dev/cognee-claude/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.3.5-local\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"\u001b[1mEmbeddingRateLimiter initialized: enabled=False, requests_limit=60, interval_seconds=60\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:22.954992\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `bb1e12db-8d3f-5e80-8615-2444eda4b32a`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.824653\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.160900\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.825175\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.335242\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.825559\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.516399\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: pypdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.834754\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: pypdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.517356\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: text_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.835421\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: text_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.518011\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: image_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.835697\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: image_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.518486\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: audio_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.835966\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: audio_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.519037\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: unstructured_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.836157\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: unstructured_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.536911\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.836754\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mRegistered loader: advanced_pdf_loader\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.infrastructure.loaders.LoaderEngine\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.685341\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.847087\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:23.836303\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `bb1e12db-8d3f-5e80-8615-2444eda4b32a`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.847599\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.058213\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'None' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.847894\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `e16895e4-38f6-5ad7-a969-cd1629861b40`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.084248\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `52948913-bf39-51ee-a535-e4f140f34c10`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.967450\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mJSON extension already loaded or unavailable: Binder exception: Extension: JSON is already loaded. You can check loaded extensions by `CALL SHOW_LOADED_EXTENSIONS() RETURN *`.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.232775\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.980303\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'None' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.378181\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.998286\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.555749\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:30.998936\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:34:24.803351\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:30.999638\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:31.006879\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:31.119544\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.668159\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.669164\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'alice' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.669470\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'white rabbit' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.669777\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'animal' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.670086\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dinah' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:34:24 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[2m2025-10-07T20:38:51.670369\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'location' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.670667\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rabbit-hole' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.974856\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.670972\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'garden' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.976689\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'alice' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.671244\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'object' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.976989\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'animal' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.671450\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'table' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.977311\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'white rabbit' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.671650\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'golden key' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.977608\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dinah' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.671857\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bottle' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.977842\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'location' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.672094\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cake' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.978119\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rabbit hole' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.672398\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mouse' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.978445\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tunnel or well' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.672607\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dodo' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.978688\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'heap of sticks and dry leaves' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.672847\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lory' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.979010\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'long low hall' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.673136\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'eaglet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.979218\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'object' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.673399\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'duck' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.979434\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'three legged glass table' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.673634\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'historical figure' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.979726\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tiny golden key' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.673871\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'william the conqueror' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.979974\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'little door' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.674120\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mary ann' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.980178\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'small passage' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.674384\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'duchess' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.980378\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lovely garden' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.674682\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'creature' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.980559\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'jar labeled orange marmalade' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.674931\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caterpillar' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.980758\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cupboard' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.675153\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rabbit' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.980944\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bottle labeled drink me' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.675376\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bill' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.981181\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'small glass box' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.675611\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'plant' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.981405\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cake labeled eat me' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.675837\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mushroom' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.981672\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pool of tears' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.676060\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'father william' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.981921\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'white kid gloves and fan' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.676333\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'character' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.982174\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bookchapter' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.676573\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pigeon' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.982434\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chapter i down the rabbit hole' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.676801\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'baby' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.982656\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chapter ii the pool of tears' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.677018\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cheshire cat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.983007\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mouse' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.677242\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hatter' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.983274\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'duck' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.677490\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'march hare' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.983483\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dodo' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.677694\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'queen' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.983677\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lory' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.677922\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cook' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.983917\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'eaglet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.678148\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'date' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.984157\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'magpie' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.678396\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'may' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.984380\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'canary' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.678677\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the cat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.984576\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'old crab' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.678911\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the dormouse' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.984798\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'young crab' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.679113\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the queen of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.985030\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'animalclass' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.679341\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the king of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.985270\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cats' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.679587\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the knave of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.985465\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dogs' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.679917\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the rose tree' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.985698\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'shore' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.680113\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'event' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.985875\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'w. rabbit house' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.680347\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the mad tea party' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.986089\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'fan' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.680632\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'king' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.986292\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'white kid gloves' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.681429\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mock turtle' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.986527\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bottle (drink me)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.681702\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gryphon' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.986754\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'thimble' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.681931\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'soldiers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.986962\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'comfits' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.682200\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gardener_1' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.987297\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'event' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.682379\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gardener_2' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.987508\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caucus-race' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.682699\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gardener_3' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.987735\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'grew large event' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.683245\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tortoise' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.988057\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'creature' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.683560\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lizards' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.988461\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'magic bottle' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.683846\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'food' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.988654\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'size-changing cake' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.684025\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tarts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.988869\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pebbles' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.684355\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dance' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.989079\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mushroom' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.684671\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lobster quadrille' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.989289\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caterpillar' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.684888\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'subject' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.989498\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hookah' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.685135\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'seaography' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.989699\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bill (lizard)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.685394\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'arithmetic' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.989916\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'guinea-pigs' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.685715\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mystery' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.990178\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.685998\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.990390\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mary ann' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.686239\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'court' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.990541\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'place' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.686484\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'guinea pig' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.990742\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rabbit house' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.686688\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lizard' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.990894\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'window' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.686886\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'march 14' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.991048\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'door' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.687125\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'march 15' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.991246\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chimney' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.687426\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'march 16' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.991431\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cucumber-frame' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.687861\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'place' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.991636\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'wood' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.688321\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'wonderland' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.991856\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'puppy' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.688615\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sister' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.992038\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'father william' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.688914\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'farm-yard' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.992222\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.689141\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'child-life' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.992402\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'size change' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.689345\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'simple_joys' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.992893\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pigeon' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:51.689662\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'simple_sorrows' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.993054\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'serpent' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:38:55.033467\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.993213\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'trees' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:03.406344\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.993435\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'little house' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.113087\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.993576\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'fish-footman' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.113738\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.993834\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'frog-footman' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.114015\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994053\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'duchess' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.114579\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994264\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cook' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.114971\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994443\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'baby' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.115220\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994661\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pig' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994797\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cheshire cat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.994960\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'kitchen' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.995114\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cauldron' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.995283\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'soup' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.995444\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pepper' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.995637\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'plate' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.995924\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'frying-pan' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996079\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'invitation letter' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996298\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'queen' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996443\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hatter' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996602\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'march hare' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996794\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'game' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.996993\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'croquet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.997436\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the cat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.997651\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the dormouse' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.997898\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'a mad tea-party' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.998205\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'table' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.998409\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the hatters watch' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.998581\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'house of the march hare' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.998819\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'a rose-tree' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.998980\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'five' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.999133\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'two' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.999302\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'seven' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.999465\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'group' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:55.999749\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'soldiers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.000078\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'courtiers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.000273\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'royal children' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.001132\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'knave of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.002873\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the king of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.003453\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the queen of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.004815\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'treacle-well' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.005347\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'elsie' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.005583\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lacie' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.005904\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tillie' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.006224\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'riddle: why is a raven like a writing-desk?' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.006483\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'song: twinkle twinkle little bat' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.006698\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tea-time' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.007096\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'the king' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.007449\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'executioner' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.008948\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gryphon' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.009396\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mock turtle' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.009604\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'croquet game' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.009761\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'croquet ground' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.010011\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hedgehog' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.010238\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'flamingo' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.010525\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rose-tree' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.010795\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'flower-pot' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.011185\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'players' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.011425\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mock turtle soup' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.011802\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'old turtle (tortoise)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.012966\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bill the lizard' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.014629\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lobster' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.015124\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'whiting' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.015383\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'snail' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.015702\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'porpoise' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.015898\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'owl' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.016462\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'panther' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.017210\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sea' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.017407\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sea-shore' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.017920\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'court of hearts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.018187\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lobster quadrille (dance)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.019379\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'creativework' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.020269\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'beautiful soup' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.021436\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'whiting song' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.022224\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'school (sea-school)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.022613\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'reeling and writhing' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.022812\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'ambition' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.023185\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'distraction' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.023469\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'uglification' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.023674\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'derision' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.023904\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mystery (ancient and modern)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.024157\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'seaography' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.024376\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'drawling' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.024600\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'stretching' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.024992\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'fainting in coils' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.025219\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'laughing' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.025502\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'grief' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.025949\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'conger eel (drawling-master)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.026243\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'old crab (classics master)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.026692\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tarts' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.026920\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pencil' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.027897\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'slate' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.028631\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'duchesss cook' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.028848\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lizard (bill)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.029560\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'guinea-pigs' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.030437\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'organization' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.030900\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'jury' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.031211\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'trial of the knave' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.031414\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'document' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.031563\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'parchment scroll' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.031771\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'trumpet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.031975\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'teacup' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.032145\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'bread-and-butter' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.032348\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pepper-box' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.032520\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'inkstand' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.032767\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'canvas bag' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.033132\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'jury-box' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.034834\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'alices dream' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.036198\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'date' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.037172\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'fourteenth of march' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.037973\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'fifteenth of march' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.038237\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sixteenth of march' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.038606\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'she' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.038879\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'little sister' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039022\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'wonderland' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039194\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dull reality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039400\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'plant' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039578\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'grass' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039741\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'pool' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.039913\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'reeds' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.040074\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'rattling teacups' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.040285\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tinkling sheep-bells' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.040468\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'shepherd boy' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.040662\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'other queer noises' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.040836\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'busy farm-yard' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.041105\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cattle' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.041323\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'grown woman' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.042019\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'simple and loving heart' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.042329\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'other little children' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.042583\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'strange tale' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.042824\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dream of wonderland' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.043010\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'simple sorrows' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.043173\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'simple joys' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.043331\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'child-life' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:35:56.043505\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'happy summer days' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:02.674965\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\u001b[92m14:36:02 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:16.723969\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:24.505751\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:24.656760\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:24.853916\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:24.999416\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:25.182065\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:25.379190\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:25.534779\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `52948913-bf39-51ee-a535-e4f140f34c10`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n"
"\u001b[2m2025-10-07T20:39:07.115479\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `453ce944-eb27-567c-9918-0d44d1614f97`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_with_telemetry()\u001b[0m]\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{UUID('241b64d6-f023-5b87-9a8f-87056f0a442c'): PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1cde937f-ae7a-5151-a20c-dc3567bee0a9'), dataset_id=UUID('241b64d6-f023-5b87-9a8f-87056f0a442c'), dataset_name='main_dataset', payload=None, data_ingestion_info=[{'run_info': PipelineRunAlreadyCompleted(status='PipelineRunAlreadyCompleted', pipeline_run_id=UUID('1cde937f-ae7a-5151-a20c-dc3567bee0a9'), dataset_id=UUID('241b64d6-f023-5b87-9a8f-87056f0a442c'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('692741cd-46e5-5988-85e9-f3901d104b7e')}, {'run_info': PipelineRunAlreadyCompleted(status='PipelineRunAlreadyCompleted', pipeline_run_id=UUID('1cde937f-ae7a-5151-a20c-dc3567bee0a9'), dataset_id=UUID('241b64d6-f023-5b87-9a8f-87056f0a442c'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('899de74a-1bef-5afd-a478-1ea944503514')}, {'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1cde937f-ae7a-5151-a20c-dc3567bee0a9'), dataset_id=UUID('241b64d6-f023-5b87-9a8f-87056f0a442c'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('6a0c7501-47bc-5632-b79c-3343d8a0b2a2')}])}"
"{UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'): PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=[{'run_info': PipelineRunCompleted(status='PipelineRunCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('3ad0b58b-2b39-5bf8-97de-4db67bd2555c')}, {'run_info': PipelineRunAlreadyCompleted(status='PipelineRunAlreadyCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('56c22102-965d-592e-958c-c1ebebf0008f')}, {'run_info': PipelineRunAlreadyCompleted(status='PipelineRunAlreadyCompleted', pipeline_run_id=UUID('1c237436-d3eb-5408-874d-91647cf2dcef'), dataset_id=UUID('8f486d81-4723-5f3d-b37b-5e27d9967d33'), dataset_name='main_dataset', payload=None, data_ingestion_info=None), 'data_id': UUID('e26acfac-f1c2-5d9d-b95a-e970a75aedde')}])}"
]
},
"execution_count": 3,
@ -662,6 +328,7 @@
],
"source": [
"import cognee\n",
"print(cognee.__version__)\n",
"await cognee.add(file_path)\n",
"await cognee.cognify()"
]
@ -685,20 +352,15 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T13:36:30.994342\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph projection completed: 239 nodes, 745 edges in 0.01s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mCogneeGraph\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:07.164471\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph projection completed: 110 nodes, 292 edges in 0.01s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mCogneeGraph\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:31.598044\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mVector collection retrieval completed: Retrieved distances from 6 collections in 0.04s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\u001b[92m14:36:31 - LiteLLM:INFO\u001b[0m: utils.py:3341 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\n"
"\u001b[2m2025-10-07T20:39:07.474073\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mVector collection retrieval completed: Retrieved distances from 6 collections in 0.09s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"['Acknowledged.']"
"['1. Alice \\n2. White Rabbit \\n3. March Hare \\n4. Hatter \\n5. Cheshire Cat \\n6. Queen of Hearts \\n7. Knave of Hearts \\n8. Dormouse']"
]
},
"execution_count": 4,
@ -712,7 +374,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"id": "883ce50d2d9dc584",
"metadata": {},
"outputs": [
@ -720,44 +382,19 @@
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:02 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:03 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:03 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:03 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:17:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n",
"\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:17:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n",
"\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m"
"\n",
"\u001b[2m2025-10-07T20:39:36.551739\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph projection completed: 110 nodes, 292 edges in 0.01s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mCogneeGraph\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-10-07T20:39:36.896038\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mVector collection retrieval completed: Retrieved distances from 6 collections in 0.09s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"[\"Alice ended up in Wonderland by following a curious White Rabbit that she encountered while sitting on a riverbank. The Rabbit muttered about being late and carried a watch, piquing Alice's curiosity. She followed it down a rabbit hole, which led her to a fantastical world.\"]"
"['Alice ended up in Wonderland by following a hurried White Rabbit down a rabbit-hole after feeling bored and drowsy.']"
]
},
"execution_count": 6,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@ -768,7 +405,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"id": "677e1bc52aa078b6",
"metadata": {},
"outputs": [
@ -776,44 +413,19 @@
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:07 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n",
"\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:17:07 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\n",
"\u001b[1m\n",
"LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:17:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n",
"\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:17:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n",
"\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m"
"\n",
"\u001b[2m2025-10-07T20:39:43.171619\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph projection completed: 110 nodes, 292 edges in 0.02s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mCogneeGraph\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-10-07T20:39:43.468210\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mVector collection retrieval completed: Retrieved distances from 6 collections in 0.08s\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"['Alice is portrayed as a curious and adventurous girl who explores Wonderland. She often questions her identity and the world around her, showing a blend of innocence and boldness. Alice displays a willingness to engage with bizarre situations and characters, while also being contemplative about her experiences.']"
"[\"Alice is described as a curious girl who exhibits a desire for adventure and exploration. She is imaginative, pondering various whimsical questions and thoughts as she navigates the oddities of Wonderland. Her personality shows signs of being thoughtful and reflective, often giving herself advice, though she doesn't always follow it. Despite her adventures and the surreal situations she encounters, she maintains a sense of bravery and a degree of confidence in her interactions with the fantastical characters she meets.\"]"
]
},
"execution_count": 7,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@ -832,7 +444,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "6effdae590b795d3",
"metadata": {},
"outputs": [
@ -841,9 +453,9 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[2m2025-08-27T13:36:40.283583\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph visualization saved as /Users/daulet/graph_visualization.html\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\u001b[2m2025-10-07T20:39:50.413314\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph visualization saved as /Users/daulet/graph_visualization.html\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n",
"\n",
"\u001b[2m2025-08-27T13:36:40.284941\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mThe HTML file has been stored on your home directory! Navigate there with cd ~\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n"
"\u001b[2m2025-10-07T20:39:50.413846\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mThe HTML file has been stored on your home directory! Navigate there with cd ~\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n"
]
},
{
@ -861,7 +473,7 @@
"True"
]
},
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@ -932,7 +544,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
"version": "3.10.11"
}
},
"nbformat": 4,

File diff suppressed because it is too large Load diff