docs: Add multimedia notebook

Added multimedia notebook for cognee

Docs COG-507
This commit is contained in:
Igor Ilic 2024-11-20 16:21:29 +01:00
parent 57783a979a
commit 61ed516d12
3 changed files with 203 additions and 31 deletions

View file

@ -265,7 +265,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "df16431d0f48b006",
"metadata": {
"ExecuteTime": {
@ -304,7 +304,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "9086abf3af077ab4",
"metadata": {
"ExecuteTime": {
@ -349,7 +349,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "a9de0cc07f798b7f",
"metadata": {
"ExecuteTime": {
@ -393,7 +393,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "185ff1c102d06111",
"metadata": {
"ExecuteTime": {
@ -437,7 +437,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "d55ce4c58f8efb67",
"metadata": {
"ExecuteTime": {
@ -479,7 +479,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"id": "ca4ecc32721ad332",
"metadata": {
"ExecuteTime": {
@ -529,14 +529,14 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"id": "bce39dc6",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# # Setting environment variables\n",
"# Setting environment variables\n",
"if \"GRAPHISTRY_USERNAME\" not in os.environ: \n",
" os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n",
"\n",
@ -546,24 +546,26 @@
"if \"LLM_API_KEY\" not in os.environ:\n",
" os.environ[\"LLM_API_KEY\"] = \"\"\n",
"\n",
"os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" # \"neo4j\" or \"networkx\"\n",
"# \"neo4j\" or \"networkx\"\n",
"os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" \n",
"# Not needed if using networkx\n",
"#GRAPH_DATABASE_URL=\"\"\n",
"#GRAPH_DATABASE_USERNAME=\"\"\n",
"#GRAPH_DATABASE_PASSWORD=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_URL\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_USERNAME\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_PASSWORD\"]=\"\"\n",
"\n",
"os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" # \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"# Not needed if using \"lancedb\"\n",
"# \"pgvector\", \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" \n",
"# Not needed if using \"lancedb\" or \"pgvector\"\n",
"# os.environ[\"VECTOR_DB_URL\"]=\"\"\n",
"# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n",
"\n",
"# Database provider\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\" # or \"postgres\"\n",
"# Relational Database provider \"sqlite\" or \"postgres\"\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\"\n",
"\n",
"# Database name\n",
"os.environ[\"DB_NAME\"]=\"cognee_db\"\n",
"\n",
"# Postgres specific parameters (Only if Postgres is run)\n",
"# Postgres specific parameters (Only if Postgres or PGVector is used)\n",
"# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n",
"# os.environ[\"DB_PORT\"]=\"5432\"\n",
"# os.environ[\"DB_USERNAME\"]=\"cognee\"\n",
@ -620,7 +622,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"id": "7c431fdef4921ae0",
"metadata": {
"ExecuteTime": {
@ -881,7 +883,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
"version": "3.9.6"
}
},
"nbformat": 4,

View file

@ -52,7 +52,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@ -71,7 +71,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@ -90,23 +90,23 @@
"# \"neo4j\" or \"networkx\"\n",
"os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" \n",
"# Not needed if using networkx\n",
"#GRAPH_DATABASE_URL=\"\"\n",
"#GRAPH_DATABASE_USERNAME=\"\"\n",
"#GRAPH_DATABASE_PASSWORD=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_URL\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_USERNAME\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_PASSWORD\"]=\"\"\n",
"\n",
"# \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"# \"pgvector\", \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" \n",
"# Not needed if using \"lancedb\"\n",
"# Not needed if using \"lancedb\" or \"pgvector\"\n",
"# os.environ[\"VECTOR_DB_URL\"]=\"\"\n",
"# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n",
"\n",
"# Database provider\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\" # or \"postgres\"\n",
"# Relational Database provider \"sqlite\" or \"postgres\"\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\"\n",
"\n",
"# Database name\n",
"os.environ[\"DB_NAME\"]=\"cognee_db\"\n",
"\n",
"# Postgres specific parameters (Only if Postgres is run)\n",
"# Postgres specific parameters (Only if Postgres or PGVector is used)\n",
"# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n",
"# os.environ[\"DB_PORT\"]=\"5432\"\n",
"# os.environ[\"DB_USERNAME\"]=\"cognee\"\n",
@ -130,8 +130,6 @@
"\n",
"from cognee.infrastructure.databases.vector.pgvector import create_db_and_tables as create_pgvector_db_and_tables\n",
"from cognee.infrastructure.databases.relational import create_db_and_tables as create_relational_db_and_tables\n",
"from cognee.infrastructure.databases.graph import get_graph_engine\n",
"from cognee.shared.utils import render_graph\n",
"from cognee.modules.users.models import User\n",
"from cognee.modules.users.methods import get_default_user\n",
"from cognee.tasks.ingestion.ingest_data_with_metadata import ingest_data_with_metadata\n",
@ -196,6 +194,9 @@
"source": [
"import graphistry\n",
"\n",
"from cognee.infrastructure.databases.graph import get_graph_engine\n",
"from cognee.shared.utils import render_graph\n",
"\n",
"# Get graph\n",
"graphistry.login(username=os.getenv(\"GRAPHISTRY_USERNAME\"), password=os.getenv(\"GRAPHISTRY_PASSWORD\"))\n",
"graph_engine = await get_graph_engine()\n",

View file

@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cognee GraphRAG with Multimedia files"
]
},
{
"cell_type": "markdown",
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"source": [
"## Load Data\n",
"\n",
"We will use a few sample multimedia files which we have on GitHub for easy access."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pathlib\n",
"\n",
"# cognee knowledge graph will be created based on the text\n",
"# and description of these files\n",
"mp3_file_path = os.path.join(\n",
" os.path.abspath(''), \"../\",\n",
" \".data/multimedia/text_to_speech.mp3\",\n",
")\n",
"png_file_path = os.path.join(\n",
" os.path.abspath(''), \"../\",\n",
" \".data/multimedia/example.png\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set environment variables"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Setting environment variables\n",
"if \"GRAPHISTRY_USERNAME\" not in os.environ: \n",
" os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n",
"\n",
"if \"GRAPHISTRY_PASSWORD\" not in os.environ: \n",
" os.environ[\"GRAPHISTRY_PASSWORD\"] = \"\"\n",
"\n",
"if \"LLM_API_KEY\" not in os.environ:\n",
" os.environ[\"LLM_API_KEY\"] = \"\"\n",
"\n",
"# \"neo4j\" or \"networkx\"\n",
"os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" \n",
"# Not needed if using networkx\n",
"#os.environ[\"GRAPH_DATABASE_URL\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_USERNAME\"]=\"\"\n",
"#os.environ[\"GRAPH_DATABASE_PASSWORD\"]=\"\"\n",
"\n",
"# \"pgvector\", \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" \n",
"# Not needed if using \"lancedb\" or \"pgvector\"\n",
"# os.environ[\"VECTOR_DB_URL\"]=\"\"\n",
"# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n",
"\n",
"# Relational Database provider \"sqlite\" or \"postgres\"\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\"\n",
"\n",
"# Database name\n",
"os.environ[\"DB_NAME\"]=\"cognee_db\"\n",
"\n",
"# Postgres specific parameters (Only if Postgres or PGVector is used)\n",
"# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n",
"# os.environ[\"DB_PORT\"]=\"5432\"\n",
"# os.environ[\"DB_USERNAME\"]=\"cognee\"\n",
"# os.environ[\"DB_PASSWORD\"]=\"cognee\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run Cognee with multimedia files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cognee\n",
"\n",
"# Create a clean slate for cognee -- reset data and system state\n",
"await cognee.prune.prune_data()\n",
"await cognee.prune.prune_system(metadata=True)\n",
"\n",
"# Add multimedia files and make them available for cognify\n",
"await cognee.add([mp3_file_path, png_file_path])\n",
"\n",
"# Create knowledge graph with cognee\n",
"await cognee.cognify()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Query Cognee for summaries related to multimedia files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from cognee.api.v1.search import SearchType\n",
"\n",
"# Query cognee for summaries of the data in the multimedia files\n",
"search_results = await cognee.search(\n",
" SearchType.SUMMARIES,\n",
" query_text=\"What is in the multimedia files?\",\n",
")\n",
"\n",
"# Display search results\n",
"for result_text in search_results:\n",
" print(result_text)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}