refactor: Refactor search so graph completion is used by default (#505)
<!-- .github/pull_request_template.md --> ## Description Refactor search so query type doesn't need to be provided to make it simpler for new users ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **Refactor** - Improved the search interface by standardizing parameter usage with explicit keyword arguments for specifying search types, enhancing clarity and consistency. - **Tests** - Updated test cases and example integrations to align with the revised search parameters, ensuring consistent behavior and reliable validation of search outcomes. <!-- end of auto-generated comment: release notes by coderabbit.ai -->
This commit is contained in:
parent
8396fed9a1
commit
5fe7ff9883
23 changed files with 119 additions and 70 deletions
10
.github/workflows/test_dynamic_steps_example.yml
vendored
10
.github/workflows/test_dynamic_steps_example.yml
vendored
|
|
@ -16,13 +16,7 @@ jobs:
|
|||
with:
|
||||
example-location: ./examples/python/dynamic_steps_example.py
|
||||
secrets:
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
|
||||
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
|
||||
|
|
|
|||
|
|
@ -9,20 +9,51 @@ concurrency:
|
|||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
RUNTIME__LOG_LEVEL: ERROR
|
||||
|
||||
jobs:
|
||||
run_notebook_test:
|
||||
uses: ./.github/workflows/reusable_notebook.yml
|
||||
with:
|
||||
notebook-location: notebooks/llama_index_cognee_integration.ipynb
|
||||
secrets:
|
||||
#LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
#LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
#LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
|
||||
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
|
||||
name: test
|
||||
runs-on: ubuntu-22.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@master
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11.x'
|
||||
|
||||
- name: Install Poetry
|
||||
uses: snok/install-poetry@v1.4.1
|
||||
with:
|
||||
virtualenvs-create: true
|
||||
virtualenvs-in-project: true
|
||||
installer-parallel: true
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install jupyter
|
||||
pip install llama-index-graph-rag-cognee==0.1.2
|
||||
|
||||
- name: Execute Jupyter Notebook
|
||||
env:
|
||||
ENV: 'dev'
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
|
||||
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
|
||||
run: |
|
||||
poetry run jupyter nbconvert \
|
||||
--to notebook \
|
||||
--execute notebooks/llama_index_cognee_integration.ipynb \
|
||||
--output executed_notebook.ipynb \
|
||||
--ExecutePreprocessor.timeout=1200
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ jobs:
|
|||
with:
|
||||
example-location: ./examples/python/multimedia_example.py
|
||||
secrets:
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }} # Use OpenAI until we deploy models to handle multimedia
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
|
||||
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
|
||||
|
|
|
|||
10
.github/workflows/test_simple_example.yml
vendored
10
.github/workflows/test_simple_example.yml
vendored
|
|
@ -16,13 +16,7 @@ jobs:
|
|||
with:
|
||||
example-location: ./examples/python/simple_example.py
|
||||
secrets:
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
|
||||
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ We build for developers who need a reliable, production-ready data layer for AI
|
|||
|
||||
## What is cognee?
|
||||
|
||||
Cognee implements scalable, modular ECL (Extract, Cognify, Load) pipelines that allow you to interconnect and retrieve past conversations, documents, and audio transcriptions while reducing hallucinations, developer effort, and cost.
|
||||
Cognee implements scalable, modular ECL (Extract, Cognify, Load) pipelines that allow you to interconnect and retrieve past conversations, documents, and audio transcriptions while reducing hallucinations, developer effort, and cost.
|
||||
|
||||
Cognee merges graph and vector databases to uncover hidden relationships and new patterns in your data. You can automatically model, load and retrieve entities and objects representing your business domain and analyze their relationships, uncovering insights that neither vector stores nor graph stores alone can provide. Learn more about use-cases [here](https://docs.cognee.ai/use_cases)
|
||||
|
||||
|
|
@ -170,7 +170,7 @@ async def main():
|
|||
print(f"Searching cognee for insights with query: '{query_text}'")
|
||||
# Query cognee for insights on the added text
|
||||
search_results = await cognee.search(
|
||||
SearchType.INSIGHTS, query_text=query_text
|
||||
query_text=query_text, query_type=SearchType.INSIGHTS
|
||||
)
|
||||
|
||||
print("Search results:")
|
||||
|
|
|
|||
|
|
@ -8,8 +8,8 @@ from cognee.modules.search.methods import search as search_function
|
|||
|
||||
|
||||
async def search(
|
||||
query_type: SearchType,
|
||||
query_text: str,
|
||||
query_type: SearchType = SearchType.GRAPH_COMPLETION,
|
||||
user: User = None,
|
||||
datasets: Union[list[str], str, None] = None,
|
||||
) -> list:
|
||||
|
|
|
|||
|
|
@ -50,19 +50,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity.name", "AI"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -47,19 +47,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "AI"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -58,19 +58,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted INSIGHTS are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted CHUNKS are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\nExtracted SUMMARIES are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -51,19 +51,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -126,21 +126,25 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(
|
||||
SearchType.CHUNKS, query_text=random_node_name, datasets=[dataset_name_2]
|
||||
query_type=SearchType.CHUNKS, query_text=random_node_name, datasets=[dataset_name_2]
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\n\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -51,19 +51,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.INSIGHTS, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -51,19 +51,23 @@ async def main():
|
|||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_text=random_node_name, query_type=SearchType.INSIGHTS
|
||||
)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted sentences are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.CHUNKS, query_text=random_node_name)
|
||||
search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=random_node_name)
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nExtracted chunks are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query_text=random_node_name)
|
||||
search_results = await cognee.search(
|
||||
query_type=SearchType.SUMMARIES, query_text=random_node_name
|
||||
)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
|
|
|
|||
|
|
@ -76,7 +76,9 @@ async def get_context_with_cognee(
|
|||
|
||||
search_results = []
|
||||
for search_type in search_types:
|
||||
raw_search_results = await cognee.search(search_type, query_text=instance["question"])
|
||||
raw_search_results = await cognee.search(
|
||||
query_type=search_type, query_text=instance["question"]
|
||||
)
|
||||
|
||||
if search_type == SearchType.INSIGHTS:
|
||||
res_list = [_insight_to_string(edge) for edge in raw_search_results]
|
||||
|
|
|
|||
|
|
@ -94,7 +94,7 @@ async def cognify_search_base_rag(content: str, context: str):
|
|||
async def cognify_search_graph(content: str, context: str):
|
||||
from cognee.api.v1.search import search, SearchType
|
||||
|
||||
results = await search(SearchType.INSIGHTS, query_text="Donald Trump")
|
||||
results = await search(query_type=SearchType.INSIGHTS, query_text="Donald Trump")
|
||||
print("results", results)
|
||||
return results
|
||||
|
||||
|
|
|
|||
|
|
@ -186,7 +186,7 @@ async def main(enable_steps):
|
|||
# Step 4: Query insights
|
||||
if enable_steps.get("retriever"):
|
||||
search_results = await cognee.search(
|
||||
SearchType.GRAPH_COMPLETION, query_text="Who has experience in design tools?"
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="Who has experience in design tools?"
|
||||
)
|
||||
print(search_results)
|
||||
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ async def main():
|
|||
|
||||
# Query cognee for summaries of the data in the multimedia files
|
||||
search_results = await cognee.search(
|
||||
SearchType.SUMMARIES,
|
||||
query_type=SearchType.SUMMARIES,
|
||||
query_text="What is in the multimedia files?",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ async def main():
|
|||
query_text = "Tell me about NLP"
|
||||
print(f"Searching cognee for insights with query: '{query_text}'")
|
||||
# Query cognee for insights on the added text
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text=query_text)
|
||||
search_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text=query_text)
|
||||
|
||||
print("Search results:")
|
||||
# Display results
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ async def entry(text: str, query: str):
|
|||
await cognee.prune.prune_system(metadata=True)
|
||||
await cognee.add(text)
|
||||
await cognee.cognify()
|
||||
search_results = await cognee.search(SearchType.GRAPH_COMPLETION, query_text=query)
|
||||
search_results = await cognee.search(query_type=SearchType.GRAPH_COMPLETION, query_text=query)
|
||||
|
||||
return {
|
||||
"text": text,
|
||||
|
|
|
|||
|
|
@ -830,7 +830,7 @@
|
|||
"node = (await vector_engine.search(\"entity_name\", \"sarah.nguyen@example.com\"))[0]\n",
|
||||
"node_name = node.payload[\"text\"]\n",
|
||||
"\n",
|
||||
"search_results = await cognee.search(SearchType.SUMMARIES, query_text = node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.SUMMARIES, query_text = node_name)\n",
|
||||
"print(\"\\n\\Extracted summaries are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
@ -851,7 +851,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"search_results = await cognee.search(SearchType.CHUNKS, query_text = node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text = node_name)\n",
|
||||
"print(\"\\n\\nExtracted chunks are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
@ -872,7 +872,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"search_results = await cognee.search(SearchType.INSIGHTS, query_text = node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text = node_name)\n",
|
||||
"print(\"\\n\\nExtracted sentences are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
|
|||
|
|
@ -179,7 +179,7 @@
|
|||
"\n",
|
||||
"# Query cognee for summaries\n",
|
||||
"search_results = await cognee.search(\n",
|
||||
" SearchType.SUMMARIES, query_text=\"What are the main news discussed in the document?\"\n",
|
||||
" query_type=SearchType.SUMMARIES, query_text=\"What are the main news discussed in the document?\"\n",
|
||||
")\n",
|
||||
"# Display search results\n",
|
||||
"print(\"\\n Summary of main news discussed:\\n\")\n",
|
||||
|
|
|
|||
|
|
@ -137,7 +137,7 @@
|
|||
"\n",
|
||||
"# Query cognee for summaries of the data in the multimedia files\n",
|
||||
"search_results = await cognee.search(\n",
|
||||
" SearchType.SUMMARIES,\n",
|
||||
" query_type=SearchType.SUMMARIES,\n",
|
||||
" query_text=\"What is in the multimedia files?\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
|
|
|
|||
|
|
@ -566,7 +566,7 @@
|
|||
"node = (await vector_engine.search(\"entity_name\", \"sarah.nguyen@example.com\"))[0]\n",
|
||||
"node_name = node.payload[\"text\"]\n",
|
||||
"\n",
|
||||
"search_results = await cognee.search(SearchType.SUMMARIES, query_text=node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.SUMMARIES, query_text=node_name)\n",
|
||||
"print(\"\\n\\Extracted summaries are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
@ -587,7 +587,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"search_results = await cognee.search(SearchType.CHUNKS, query_text=node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.CHUNKS, query_text=node_name)\n",
|
||||
"print(\"\\n\\nExtracted chunks are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
@ -608,7 +608,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"search_results = await cognee.search(SearchType.INSIGHTS, query_text=node_name)\n",
|
||||
"search_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text=node_name)\n",
|
||||
"print(\"\\n\\nExtracted sentences are:\\n\")\n",
|
||||
"for result in search_results:\n",
|
||||
" print(f\"{result}\\n\")"
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue