fix graph logic

This commit is contained in:
Vasilije 2024-05-18 11:51:10 +02:00
parent 4e6fcdec25
commit 57e3e2ef90
3 changed files with 48 additions and 119 deletions

View file

@ -16,6 +16,7 @@ from cognee.modules.cognify.graph.add_data_chunks import add_data_chunks
from cognee.modules.cognify.graph.add_document_node import add_document_node
from cognee.modules.cognify.graph.add_classification_nodes import add_classification_nodes
from cognee.modules.cognify.graph.add_cognitive_layer_graphs import add_cognitive_layer_graphs
from cognee.modules.cognify.graph.add_label_nodes import add_label_nodes
from cognee.modules.cognify.graph.add_summary_nodes import add_summary_nodes
from cognee.modules.cognify.graph.add_node_connections import group_nodes_by_layer, \
graph_ready_output, connect_nodes_in_graph
@ -32,9 +33,9 @@ from cognee.modules.data.get_cognitive_layers import get_cognitive_layers
from cognee.modules.data.get_layer_graphs import get_layer_graphs
from cognee.modules.topology.topology import TopologyEngine
from cognee.shared.GithubClassification import CodeContentPrediction
from cognee.shared.data_models import ChunkStrategy, DefaultGraphModel
from cognee.shared.data_models import ChunkStrategy, DefaultGraphModel, KnowledgeGraph
from cognee.utils import send_telemetry
from cognee.shared.SourceCodeGraph import SourceCodeGraph
config = Config()
config.load()
@ -111,7 +112,7 @@ async def cognify(datasets: Union[str, List[str]] = None):
await asyncio.gather(
*[process_text(chunk["collection"], chunk["chunk_id"], chunk["text"], chunk["file_metadata"]) for chunk in
*[process_text(chunk["collection"], chunk["chunk_id"], chunk["text"], chunk["file_metadata"],chunk['document_id']) for chunk in
added_chunks]
)
@ -122,9 +123,17 @@ async def cognify(datasets: Union[str, List[str]] = None):
for (dataset_name, files) in dataset_files:
for file_metadata in files:
graph_topology = infrastructure_config.get_config()["graph_model"]
if graph_topology == SourceCodeGraph:
parent_node_id = f"{file_metadata['name']}.{file_metadata['extension']}"
elif graph_topology == KnowledgeGraph:
parent_node_id = f"DefaultGraphModel__{USER_ID}"
else:
parent_node_id = f"DefaultGraphModel__{USER_ID}"
document_id = await add_document_node(
graph_client,
parent_node_id=f"DefaultGraphModel__{USER_ID}",
parent_node_id=parent_node_id,
document_metadata=file_metadata,
)
files_batch.append((dataset_name, file_metadata, document_id))
@ -141,132 +150,48 @@ async def cognify(datasets: Union[str, List[str]] = None):
return graph_client.graph
#
# for (dataset_name, files) in dataset_files:
# for file_metadata in files:
# with open(file_metadata["file_path"], "rb") as file:
# try:
# file_type = guess_file_type(file)
# text = extract_text_from_file(file, file_type)
# if text is None:
# text = "empty file"
# subchunks = chunk_engine.chunk_data(chunk_strategy, text, config.chunk_size, config.chunk_overlap)
#
# if dataset_name not in data_chunks:
# data_chunks[dataset_name] = []
#
# for subchunk in subchunks:
# data_chunks[dataset_name].append(dict(text = subchunk, chunk_id = str(uuid4()), file_metadata = file_metadata))
# except FileTypeException:
# logger.warning("File (%s) has an unknown file type. We are skipping it.", file_metadata["id"])
#
#
#
#
# added_chunks: list[tuple[str, str, dict]] = await add_data_chunks(data_chunks)
#
# await asyncio.gather(
# *[process_text(chunk["collection"], chunk["chunk_id"], chunk["text"], chunk["file_metadata"]) for chunk in added_chunks]
# )
#
# return graph_client.graph
async def process_text(chunk_collection: str, chunk_id: str, input_text: str, file_metadata: dict):
async def process_text(chunk_collection: str, chunk_id: str, input_text: str, file_metadata: dict, document_id: str):
print(f"Processing chunk ({chunk_id}) from document ({file_metadata['id']}).")
graph_client = await get_graph_client(infrastructure_config.get_config()["graph_engine"])
graph_topology = infrastructure_config.get_config()["graph_topology"]
if graph_topology == "default":
parent_node_id = f"{file_metadata['name']}.{file_metadata['extension']}"
elif graph_topology == DefaultGraphModel:
parent_node_id = f"DefaultGraphModel__{USER_ID}"
graph_topology = infrastructure_config.get_config()["graph_model"]
if graph_topology == SourceCodeGraph:
classified_categories = [{'data_type': 'text', 'category_name': 'Code and functions'}]
elif graph_topology == KnowledgeGraph:
classified_categories = await get_content_categories(input_text)
else:
classified_categories = [{'data_type': 'text', 'category_name': 'Unclassified text'}]
document_id = await add_document_node(
graph_client,
parent_node_id = f"{file_metadata['name']}.{file_metadata['extension']}", #make a param of defaultgraph model to make sure when user passes his stuff, it doesn't break pipeline
document_metadata = file_metadata,
)
# print("got here2")
# await add_label_nodes(graph_client, document_id, chunk_id, file_metadata["keywords"].split("|"))
# classified_categories = await get_content_categories(input_text)
#
# print("classified_categories", classified_categories)
# await add_classification_nodes(
# graph_client,
# parent_node_id = document_id,
# categories = classified_categories,
# )
await add_classification_nodes(
graph_client,
parent_node_id = document_id,
categories = classified_categories,
)
print(f"Chunk ({chunk_id}) classified.")
content_summary = await get_content_summary(input_text)
await add_summary_nodes(graph_client, document_id, content_summary)
print(f"Chunk ({chunk_id}) summarized.")
cognitive_layers = await get_cognitive_layers(input_text, classified_categories)
cognitive_layers = cognitive_layers[:config.cognitive_layers_limit]
try:
cognitive_layers = (await add_cognitive_layers(graph_client, document_id, cognitive_layers))[:2]
print("cognitive_layers", cognitive_layers)
layer_graphs = await get_layer_graphs(input_text, cognitive_layers)
await add_cognitive_layer_graphs(graph_client, chunk_collection, chunk_id, layer_graphs)
except:
pass
classified_categories= [{'data_type': 'text', 'category_name': 'Source code in various programming languages'}]
#
# async def process_text(document_id: str, chunk_id: str, chunk_collection: str, input_text: str):
# raw_document_id = document_id.split("__")[-1]
#
# print(f"Processing chunk ({chunk_id}) from document ({raw_document_id}).")
#
# graph_client = await get_graph_client(infrastructure_config.get_config()["graph_engine"])
#
# classified_categories = await get_content_categories(input_text)
# await add_classification_nodes(
# graph_client,
# parent_node_id = document_id,
# categories = classified_categories,
# )
# >>>>>>> origin/main
#
# print(f"Chunk ({chunk_id}) classified.")
#
# # print("document_id", document_id)
# #
# # content_summary = await get_content_summary(input_text)
# # await add_summary_nodes(graph_client, document_id, content_summary)
#
# print(f"Chunk ({chunk_id}) summarized.")
# #
# cognitive_layers = await get_cognitive_layers(input_text, classified_categories)
# cognitive_layers = (await add_cognitive_layers(graph_client, document_id, cognitive_layers))[:2]
# #
# layer_graphs = await get_layer_graphs(input_text, cognitive_layers)
# await add_cognitive_layer_graphs(graph_client, chunk_collection, chunk_id, layer_graphs)
#
# <<<<<<< HEAD
# print("got here 4444")
#
# if infrastructure_config.get_config()["connect_documents"] is True:
# db_engine = infrastructure_config.get_config()["database_engine"]
# relevant_documents_to_connect = db_engine.fetch_cognify_data(excluded_document_id = file_metadata["id"])
#
# list_of_nodes = []
#
# relevant_documents_to_connect.append({
# "layer_id": document_id,
# })
#
# for document in relevant_documents_to_connect:
# node_descriptions_to_match = await graph_client.extract_node_description(document["layer_id"])
# list_of_nodes.extend(node_descriptions_to_match)
#
# nodes_by_layer = await group_nodes_by_layer(list_of_nodes)
#
# results = await resolve_cross_graph_references(nodes_by_layer)
#
# relationships = graph_ready_output(results)
#
# await connect_nodes_in_graph(
# graph_client,
# relationships,
# score_threshold = infrastructure_config.get_config()["intra_layer_score_treshold"]
# )
#
# send_telemetry("cognee.cognify")
#
# print(f"Chunk ({chunk_id}) cognified.")
# =======
# if infrastructure_config.get_config()["connect_documents"] is True:
# db_engine = infrastructure_config.get_config()["database_engine"]
# relevant_documents_to_connect = db_engine.fetch_cognify_data(excluded_document_id = raw_document_id)
@ -296,7 +221,7 @@ async def process_text(chunk_collection: str, chunk_id: str, input_text: str, fi
# send_telemetry("cognee.cognify")
#
# print(f"Chunk ({chunk_id}) cognified.")
# >>>>>>> origin/main
if __name__ == "__main__":
@ -319,6 +244,8 @@ if __name__ == "__main__":
config.set_graph_model(SourceCodeGraph)
config.set_classification_model(CodeContentPrediction)
graph = await cognify()

View file

@ -77,6 +77,7 @@ class Config:
# Database parameters
graph_database_provider: str = os.getenv("GRAPH_DB_PROVIDER", "NETWORKX")
graph_topology:str = DefaultGraphModel
cognitive_layers_limit: int = 2
if (
os.getenv("ENV") == "prod"

View file

@ -17,6 +17,7 @@ async def add_document_node(graph_client: GraphDBInterface, parent_node_id, docu
document["type"] = "Document"
await graph_client.add_node(document_id, document)
print(f"Added document node: {document_id}")
await graph_client.add_edge(
parent_node_id,