Connect pipeline to benchmark (#42)
evals/eval_swe_bench runs the code graph pipeline, adds retrieval to the end, then connects the whole thing with swe-bench Some unnecessary utility functions were removed. Note: the pipeline is called for a "graphrag" folder as an example, due to bugs in the pipeline.
This commit is contained in:
commit
57754b3ca0
5 changed files with 57 additions and 153 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
|
@ -14,7 +14,7 @@ __pycache__/
|
|||
*$py.class
|
||||
|
||||
full_run.ipynb
|
||||
evals/
|
||||
logs/
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
|
|
|||
|
|
@ -1,3 +1,3 @@
|
|||
I need you to solve this issue by looking at the provided knowledge graph and
|
||||
generating a single patch file that I can apply directly to this repository using git apply.
|
||||
I need you to solve this issue by looking at the provided edges retrieved from a knowledge graph and
|
||||
generate a single patch file that I can apply directly to this repository using git apply.
|
||||
Please respond with a single patch file in the following format.
|
||||
|
|
@ -1,13 +1,15 @@
|
|||
import asyncio
|
||||
import logging
|
||||
from typing import List
|
||||
from cognee.modules.users.models import User
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
from cognee.modules.users.models import User
|
||||
from cognee.shared.utils import send_telemetry
|
||||
|
||||
|
||||
def format_triplets(edges):
|
||||
print("\n\n\n")
|
||||
def filter_attributes(obj, attributes):
|
||||
|
|
@ -48,16 +50,14 @@ def format_triplets(edges):
|
|||
return "".join(triplets)
|
||||
|
||||
|
||||
async def brute_force_triplet_search(query: str, user: User = None, top_k = 5) -> list:
|
||||
async def brute_force_triplet_search(query: str, user: User = None, top_k = 5, collections = None) -> list:
|
||||
if user is None:
|
||||
user = await get_default_user()
|
||||
|
||||
if user is None:
|
||||
raise PermissionError("No user found in the system. Please create a user.")
|
||||
|
||||
retrieved_results = await brute_force_search(query, user, top_k)
|
||||
|
||||
|
||||
retrieved_results = await brute_force_search(query, user, top_k, collections=collections)
|
||||
return retrieved_results
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -4,28 +4,24 @@ import subprocess
|
|||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from datasets import Dataset
|
||||
from swebench.harness.utils import load_swebench_dataset
|
||||
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
||||
|
||||
import cognee
|
||||
|
||||
from cognee.shared.data_models import SummarizedContent
|
||||
from cognee.shared.utils import render_graph
|
||||
from cognee.tasks.repo_processor import (
|
||||
enrich_dependency_graph,
|
||||
expand_dependency_graph,
|
||||
get_repo_file_dependencies,
|
||||
)
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.summarization import summarize_code
|
||||
from cognee.modules.pipelines import Task, run_tasks
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt
|
||||
from evals.eval_utils import download_instances
|
||||
from cognee.modules.pipelines import Task, run_tasks
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import \
|
||||
brute_force_triplet_search
|
||||
from cognee.shared.data_models import SummarizedContent
|
||||
from cognee.shared.utils import render_graph
|
||||
from cognee.tasks.repo_processor import (enrich_dependency_graph,
|
||||
expand_dependency_graph,
|
||||
get_repo_file_dependencies)
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.summarization import summarize_code
|
||||
from evals.eval_utils import download_github_repo, retrieved_edges_to_string
|
||||
|
||||
|
||||
def check_install_package(package_name):
|
||||
|
|
@ -45,30 +41,27 @@ def check_install_package(package_name):
|
|||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
|
||||
|
||||
async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS):
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system()
|
||||
|
||||
#dataset_name = "SWE_test_data"
|
||||
|
||||
#await cognee.add('', dataset_name = dataset_name)
|
||||
|
||||
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
|
||||
|
||||
|
||||
repo_path = '/Users/borisarzentar/Projects/graphrag'
|
||||
|
||||
|
||||
tasks = [
|
||||
Task(get_repo_file_dependencies),
|
||||
Task(add_data_points, task_config = { "batch_size": 50 }),
|
||||
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
|
||||
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
|
||||
Task(add_data_points, task_config = { "batch_size": 50 }),
|
||||
# Task(summarize_code, summarization_model = SummarizedContent),
|
||||
Task(summarize_code, summarization_model = SummarizedContent),
|
||||
]
|
||||
|
||||
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
|
||||
|
||||
|
||||
async for result in pipeline:
|
||||
print(result)
|
||||
|
||||
|
|
@ -79,19 +72,20 @@ async def generate_patch_with_cognee(instance, llm_client, search_type=SearchTyp
|
|||
problem_statement = instance['problem_statement']
|
||||
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
|
||||
|
||||
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
|
||||
retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3, collections = ["data_point_source_code", "data_point_text"])
|
||||
|
||||
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
|
||||
|
||||
prompt = "\n".join(
|
||||
[
|
||||
problem_statement,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str,
|
||||
]
|
||||
)
|
||||
prompt = "\n".join([
|
||||
problem_statement,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"These are the retrieved edges:",
|
||||
retrieved_edges_str
|
||||
])
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=prompt,
|
||||
system_prompt=instructions,
|
||||
|
|
@ -162,13 +156,8 @@ async def main():
|
|||
dataset_name = 'princeton-nlp/SWE-bench_Lite'
|
||||
swe_dataset = load_swebench_dataset(
|
||||
dataset_name, split='test')[:1]
|
||||
filepath = Path("SWE-bench_testsample")
|
||||
if filepath.exists():
|
||||
dataset = Dataset.load_from_disk(filepath)
|
||||
else:
|
||||
dataset = download_instances(swe_dataset, filepath)
|
||||
predictions_path = "preds.json"
|
||||
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
|
||||
preds = await get_preds(swe_dataset, with_cognee=not args.cognee_off)
|
||||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
|
||||
|
|
|
|||
|
|
@ -1,107 +1,7 @@
|
|||
import os
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from datasets import Dataset
|
||||
from swebench.inference.make_datasets.create_instance import make_code_text
|
||||
from swebench.inference.make_datasets.utils import (AutoContextManager,
|
||||
ingest_directory_contents)
|
||||
from tqdm.auto import tqdm
|
||||
from git import Repo
|
||||
import shutil
|
||||
|
||||
def ingest_files(filenames):
|
||||
files_dict = dict()
|
||||
for filename in filenames:
|
||||
with open(filename) as f:
|
||||
content = f.read()
|
||||
files_dict[filename] = content
|
||||
return files_dict
|
||||
|
||||
|
||||
def ingest_repos(input_instances):
|
||||
orig_dir = os.getcwd()
|
||||
with TemporaryDirectory(
|
||||
dir="/scratch" if os.path.exists("/scratch") else "/tmp"
|
||||
) as root_dir:
|
||||
for instance in tqdm(
|
||||
input_instances.values(),
|
||||
total=len(input_instances),
|
||||
desc="Downloading repos on specific commits",
|
||||
):
|
||||
try:
|
||||
with AutoContextManager(
|
||||
instance, root_dir
|
||||
) as cm:
|
||||
readmes = cm.get_readme_files()
|
||||
instance["readmes"] = ingest_files(readmes)
|
||||
instance["file_contents"] = ingest_directory_contents(
|
||||
cm.repo_path
|
||||
)
|
||||
finally:
|
||||
# if AutoContextManager fails to exit properly future exits will return the wrong directory
|
||||
os.chdir(orig_dir)
|
||||
|
||||
return input_instances
|
||||
|
||||
|
||||
def extract_fields(instance):
|
||||
readmes_text = make_code_text(instance["readmes"])
|
||||
code_text = make_code_text(
|
||||
instance["file_contents"], add_line_numbers=False)
|
||||
|
||||
text_inputs = "\n".join([readmes_text, code_text])
|
||||
text_inputs = text_inputs.strip() + "\n\n"
|
||||
# text_inputs = code_text
|
||||
patch = "\n".join(["<patch>", instance["patch"], "</patch>"])
|
||||
return {**instance, "text": text_inputs, "patch": patch}
|
||||
|
||||
|
||||
def create_dataset(input_instances):
|
||||
columns = [
|
||||
"instance_id",
|
||||
"text",
|
||||
"repo",
|
||||
"base_commit",
|
||||
"problem_statement",
|
||||
"hints_text",
|
||||
"created_at",
|
||||
"patch",
|
||||
"test_patch",
|
||||
"version",
|
||||
"FAIL_TO_PASS",
|
||||
"PASS_TO_PASS",
|
||||
"environment_setup_commit",
|
||||
]
|
||||
|
||||
data_table = {key: list() for key in columns}
|
||||
for instance in input_instances.values():
|
||||
datum = extract_fields(instance)
|
||||
for key in columns:
|
||||
data_table[key].append(datum[key] if key in datum else "")
|
||||
dataset = Dataset.from_dict(data_table)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def download_instances(
|
||||
input_data,
|
||||
path=Path("SWE-bench_testsample"),
|
||||
verbose=False,
|
||||
):
|
||||
"""Downloads code from github.
|
||||
|
||||
Args:
|
||||
- input_data: dictionary with unprocessed input instances.
|
||||
- verbose: set ContextManager verbose to True
|
||||
"""
|
||||
input_instances = {x["instance_id"]: x for x in input_data}
|
||||
input_instances_copy = deepcopy(input_instances)
|
||||
input_instances_with_text = ingest_repos(input_instances_copy)
|
||||
dataset = create_dataset(input_instances_with_text)
|
||||
dataset.save_to_disk(path)
|
||||
return dataset
|
||||
from git import Repo
|
||||
|
||||
|
||||
def download_github_repo(instance, output_dir):
|
||||
|
|
@ -154,4 +54,19 @@ def delete_repo(repo_path):
|
|||
else:
|
||||
print(f"Repository path {repo_path} does not exist. Nothing to delete.")
|
||||
except Exception as e:
|
||||
print(f"Error deleting repository at {repo_path}: {e}")
|
||||
print(f"Error deleting repository at {repo_path}: {e}")
|
||||
|
||||
|
||||
def node_to_string(node):
|
||||
text = node.attributes["text"]
|
||||
type = node.attributes["type"]
|
||||
return f"Node(id: {node.id}, type: {type}, description: {text})"
|
||||
|
||||
|
||||
def retrieved_edges_to_string(retrieved_edges):
|
||||
edge_strings = []
|
||||
for edge in retrieved_edges:
|
||||
relationship_type = edge.attributes["relationship_type"]
|
||||
edge_str = f"{node_to_string(edge.node1)} {relationship_type} {node_to_string(edge.node2)}"
|
||||
edge_strings.append(edge_str)
|
||||
return "\n".join(edge_strings)
|
||||
Loading…
Add table
Reference in a new issue