refactor: Use include_payload where necessary
This commit is contained in:
parent
51a9ff0613
commit
4f7ab87683
10 changed files with 22 additions and 9 deletions
|
|
@ -236,6 +236,7 @@ class NeptuneAnalyticsAdapter(NeptuneGraphDB, VectorDBInterface):
|
|||
query_vector: Optional[List[float]] = None,
|
||||
limit: Optional[int] = None,
|
||||
with_vector: bool = False,
|
||||
include_payload: bool = False, # TODO: Add support for this parameter
|
||||
):
|
||||
"""
|
||||
Perform a search in the specified collection using either a text query or a vector
|
||||
|
|
|
|||
|
|
@ -47,7 +47,9 @@ class ChunksRetriever(BaseRetriever):
|
|||
vector_engine = get_vector_engine()
|
||||
|
||||
try:
|
||||
found_chunks = await vector_engine.search("DocumentChunk_text", query, limit=self.top_k)
|
||||
found_chunks = await vector_engine.search(
|
||||
"DocumentChunk_text", query, limit=self.top_k, include_payload=True
|
||||
)
|
||||
logger.info(f"Found {len(found_chunks)} chunks from vector search")
|
||||
await update_node_access_timestamps(found_chunks)
|
||||
|
||||
|
|
|
|||
|
|
@ -67,7 +67,9 @@ class TripletRetriever(BaseRetriever):
|
|||
"In order to use TRIPLET_COMPLETION first use the create_triplet_embeddings memify pipeline. "
|
||||
)
|
||||
|
||||
found_triplets = await vector_engine.search("Triplet_text", query, limit=self.top_k)
|
||||
found_triplets = await vector_engine.search(
|
||||
"Triplet_text", query, limit=self.top_k, include_payload=True
|
||||
)
|
||||
|
||||
if len(found_triplets) == 0:
|
||||
return ""
|
||||
|
|
|
|||
|
|
@ -97,7 +97,7 @@ async def test_vector_engine_search_none_limit():
|
|||
query_vector = (await vector_engine.embedding_engine.embed_text([query_text]))[0]
|
||||
|
||||
result = await vector_engine.search(
|
||||
collection_name=collection_name, query_vector=query_vector, limit=None
|
||||
collection_name=collection_name, query_vector=query_vector, limit=None, include_payload=True
|
||||
)
|
||||
|
||||
# Check that we did not accidentally use any default value for limit
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ async def main():
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "AI"))[0]
|
||||
random_node = (await vector_engine.search("Entity_name", "AI", include_payload=True))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
|
|
@ -63,7 +63,9 @@ async def main():
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node = (
|
||||
await vector_engine.search("Entity_name", "Quantum computer", include_payload=True)
|
||||
)[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
|
|
@ -52,7 +52,9 @@ async def main():
|
|||
await cognee.cognify([dataset_name])
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node = (
|
||||
await vector_engine.search("Entity_name", "Quantum computer", include_payload=True)
|
||||
)[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
|
|
@ -163,7 +163,9 @@ async def main():
|
|||
await test_getting_of_documents(dataset_name_1)
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node = (
|
||||
await vector_engine.search("Entity_name", "Quantum computer", include_payload=True)
|
||||
)[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
|
|
@ -58,7 +58,9 @@ async def main():
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node = (
|
||||
await vector_engine.search("Entity_name", "Quantum computer", include_payload=True)
|
||||
)[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
|
|
@ -43,7 +43,7 @@ async def main():
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "AI"))[0]
|
||||
random_node = (await vector_engine.search("Entity_name", "AI", include_payload=True))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue