merge changes from code-graph
This commit is contained in:
commit
4da1657140
5 changed files with 166 additions and 22 deletions
|
|
@ -1,3 +1,2 @@
|
|||
I need you to solve this issue by looking at the provided edges retrieved from a knowledge graph and
|
||||
generate a single patch file that I can apply directly to this repository using git apply.
|
||||
I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply.
|
||||
Please respond with a single patch file in the following format.
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
I need you to solve this issue by looking at the provided knowledge graph and
|
||||
generating a single patch file that I can apply directly to this repository using git apply.
|
||||
Please respond with a single patch file in the following format.
|
||||
64
evals/EC2_README.md
Normal file
64
evals/EC2_README.md
Normal file
|
|
@ -0,0 +1,64 @@
|
|||
## Creating the EC2 Instance
|
||||
|
||||
Create an EC2 Instance with the
|
||||
|
||||
`Ubuntu Image`
|
||||
|
||||
Many instance types will work, we used:
|
||||
|
||||
`m7a.2xlarge` # more than 8 parallel processes doesn't seem to speed up overall process. Maybe to do with docker parallelism?
|
||||
|
||||
DON'T FORGET TO ADD
|
||||
|
||||
`500 GB storage`
|
||||
|
||||
Or the evaluation run will run out of space
|
||||
|
||||
Add a key pair login where you have access to the corresponding key file (*.pem)
|
||||
|
||||
## Accessing your instance and setup
|
||||
|
||||
To ssh into the instance, you have to save your key pair file (*.pem) to an appropriate location, such as ~/.aws. After launching the instance, you can access the Instance Summary, and retrieve "Public IPv4 DNS" address. Then run
|
||||
|
||||
`ssh -i PATH_TO_KEY ubuntu@IPv4ADDRESS`
|
||||
|
||||
to gain command line access to the instance.
|
||||
|
||||
To copy your current state of cognee, go to the folder that contains "cognee" on your local machine, zip it to cognee.zip and run:
|
||||
|
||||
`zip -r cognee.zip cognee`
|
||||
`scp -i PATH_TO_KEY cognee.zip ubuntu@IPv4ADDRESS:cognee.zip`
|
||||
|
||||
And unzip cognee.zip in your SSH session:
|
||||
|
||||
`sudo apt install unzip`
|
||||
`unzip cognee.zip`
|
||||
|
||||
Then run:
|
||||
`cd cognee`
|
||||
`source evals/cloud/setup_ubuntu_instance.sh`
|
||||
|
||||
`sudo usermod -aG docker $USER`
|
||||
|
||||
disconnect, and reconnect.
|
||||
|
||||
Confirm that `ubuntu` has been added to the docker user group with
|
||||
|
||||
`groups | grep docker`
|
||||
|
||||
## Running SWE-bench
|
||||
|
||||
Then enter a `screen` and activate the virtual env
|
||||
|
||||
`screen`
|
||||
`source venv/bin/activate`
|
||||
|
||||
then, from cognee, you can run swe_bench:
|
||||
|
||||
`cd cognee`
|
||||
|
||||
`python evals/eval_swe_bench.py --cognee_off --max_workers=N_CPUS`
|
||||
|
||||
Building the environment images should take roughly 17 minutes
|
||||
|
||||
If the virtual env wasn't set up correctly for some reason, just run the last few lines of `setup_ubuntu_instance.sh` manually
|
||||
33
evals/cloud/setup_ubuntu_instance.sh
Normal file
33
evals/cloud/setup_ubuntu_instance.sh
Normal file
|
|
@ -0,0 +1,33 @@
|
|||
sudo apt-get update -y
|
||||
sudo apt-get install -y ca-certificates curl
|
||||
sudo install -m 0755 -d /etc/apt/keyrings
|
||||
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
|
||||
sudo chmod a+r /etc/apt/keyrings/docker.asc
|
||||
|
||||
# Add the repository to Apt sources:
|
||||
echo \
|
||||
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
|
||||
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
|
||||
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
|
||||
sudo apt-get update -y
|
||||
|
||||
sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
|
||||
|
||||
sudo docker run hello-world
|
||||
|
||||
sudo apt install -y unzip
|
||||
|
||||
sudo apt-get install -y python3-virtualenv
|
||||
|
||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||
|
||||
sudo apt update -y
|
||||
|
||||
sudo apt install -y python3.11
|
||||
|
||||
virtualenv venv --python=python3.11
|
||||
|
||||
source venv/bin/activate
|
||||
pip install poetry
|
||||
poetry install
|
||||
pip install swebench transformers sentencepiece datasets tiktoken protobuf
|
||||
|
|
@ -1,6 +1,7 @@
|
|||
import argparse
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from datasets import Dataset
|
||||
|
|
@ -13,6 +14,25 @@ from cognee.api.v1.search import SearchType
|
|||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt
|
||||
from evals.eval_utils import download_instances
|
||||
|
||||
|
||||
def check_install_package(package_name):
|
||||
"""
|
||||
Check if a pip package is installed and install it if not.
|
||||
Returns True if package is/was installed successfully, False otherwise.
|
||||
"""
|
||||
try:
|
||||
__import__(package_name)
|
||||
return True
|
||||
except ImportError:
|
||||
try:
|
||||
subprocess.check_call(
|
||||
[sys.executable, "-m", "pip", "install", package_name]
|
||||
)
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
from cognee.modules.pipelines import Task, run_tasks
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import \
|
||||
brute_force_triplet_search
|
||||
|
|
@ -39,7 +59,8 @@ def retrieved_edges_to_string(retrieved_edges):
|
|||
edge_strings.append(edge_str)
|
||||
return "\n".join(edge_strings)
|
||||
|
||||
async def generate_patch_with_cognee(instance):
|
||||
async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS):
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system()
|
||||
|
||||
|
|
@ -69,7 +90,7 @@ async def generate_patch_with_cognee(instance):
|
|||
await render_graph(None, include_labels = True, include_nodes = True)
|
||||
|
||||
problem_statement = instance['problem_statement']
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
|
||||
|
||||
retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3)
|
||||
|
||||
|
|
@ -93,20 +114,20 @@ async def generate_patch_with_cognee(instance):
|
|||
return answer_prediction
|
||||
|
||||
|
||||
async def generate_patch_without_cognee(instance):
|
||||
problem_statement = instance['problem_statement']
|
||||
prompt = instance["text"]
|
||||
async def generate_patch_without_cognee(instance, llm_client):
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
text_input=instance["text"],
|
||||
system_prompt=instructions,
|
||||
response_model=str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
if with_cognee:
|
||||
model_name = "with_cognee"
|
||||
pred_func = generate_patch_with_cognee
|
||||
|
|
@ -114,14 +135,21 @@ async def get_preds(dataset, with_cognee=True):
|
|||
model_name = "without_cognee"
|
||||
pred_func = generate_patch_without_cognee
|
||||
|
||||
futures = [
|
||||
(instance["instance_id"], pred_func(instance, llm_client))
|
||||
for instance in dataset
|
||||
]
|
||||
model_patches = await asyncio.gather(*[x[1] for x in futures])
|
||||
|
||||
for instance in dataset:
|
||||
await pred_func(instance)
|
||||
preds = [
|
||||
{
|
||||
"instance_id": instance_id,
|
||||
"model_patch": model_patch,
|
||||
"model_name_or_path": model_name,
|
||||
}
|
||||
for (instance_id, _), model_patch in zip(futures, model_patches)
|
||||
]
|
||||
|
||||
preds = [{"instance_id": instance["instance_id"],
|
||||
"model_patch": await pred_func(instance),
|
||||
"model_name_or_path": model_name} for instance in dataset]
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
|
|
@ -129,8 +157,12 @@ async def main():
|
|||
parser = argparse.ArgumentParser(
|
||||
description="Run LLM predictions on SWE-bench dataset")
|
||||
parser.add_argument('--cognee_off', action='store_true')
|
||||
parser.add_argument("--max_workers", type=int, required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
for dependency in ["transformers", "sentencepiece", "swebench"]:
|
||||
check_install_package(dependency)
|
||||
|
||||
if args.cognee_off:
|
||||
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
|
||||
dataset = load_swebench_dataset(dataset_name, split='test')
|
||||
|
|
@ -153,12 +185,25 @@ async def main():
|
|||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
|
||||
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
|
||||
"--dataset_name", dataset_name,
|
||||
"--split", "test",
|
||||
"--predictions_path", predictions_path,
|
||||
"--max_workers", "1",
|
||||
"--run_id", "test_run"])
|
||||
|
||||
subprocess.run(
|
||||
[
|
||||
"python",
|
||||
"-m",
|
||||
"swebench.harness.run_evaluation",
|
||||
"--dataset_name",
|
||||
dataset_name,
|
||||
"--split",
|
||||
"test",
|
||||
"--predictions_path",
|
||||
predictions_path,
|
||||
"--max_workers",
|
||||
str(args.max_workers),
|
||||
"--run_id",
|
||||
"test_run",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue