feat: retrieve golden contexts [COG-1364] (#579)

<!-- .github/pull_request_template.md -->

## Description
<!-- Provide a clear description of the changes in this PR -->
• Added load_golden_context parameter to BaseBenchmarkAdapter's abstract
load_corpus method, establishing a common interface for retrieving
supporting evidence
• Refactored HotpotQAAdapter with a modular design: introduced
_get_metadata_field_name method to handle dataset-specific fields
(making it extensible for child classes), implemented get golden context
functionality.
• Refactored TwoWikiMultihopAdapter to inherit from HotpotQAAdapter,
overriding only the necessary methods while reusing parent's
functionality
• Added golden context support to MusiqueQAAdapter with their
decomposition-based format
## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced an option to include additional context during corpus
loading, enhancing the quality and flexibility of generated QA pairs.
- **Refactor**
- Streamlined and modularized the processing workflow across different
adapters for improved consistency and maintainability.
- Updated metadata extraction to refine the display of contextual
information.
- Shifted focus in the `TwoWikiMultihopAdapter` from corpus loading to
context extraction.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
This commit is contained in:
lxobr 2025-02-27 13:25:47 +01:00 committed by GitHub
parent 4c3c811c1e
commit 4b7c21d7d8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 122 additions and 87 deletions

View file

@ -4,5 +4,7 @@ from typing import List, Optional
class BaseBenchmarkAdapter(ABC):
@abstractmethod
def load_corpus(self, limit: Optional[int] = None, seed: int = 42) -> List[str]:
def load_corpus(
self, limit: Optional[int] = None, seed: int = 42, load_golden_context: bool = False
) -> List[str]:
pass

View file

@ -2,7 +2,7 @@ import requests
import os
import json
import random
from typing import Optional, Any
from typing import Optional, Any, List, Tuple
from evals.eval_framework.benchmark_adapters.base_benchmark_adapter import BaseBenchmarkAdapter
@ -14,9 +14,55 @@ class HotpotQAAdapter(BaseBenchmarkAdapter):
# distractor test: "http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_distractor_v1.json" delete file after changing the url
}
def __init__(self):
super().__init__()
self.metadata_field_name = "level"
def _is_valid_supporting_fact(self, sentences: List[str], sentence_idx: Any) -> bool:
"""Validates if a supporting fact index is valid for the given sentences."""
return sentences and isinstance(sentence_idx, int) and 0 <= sentence_idx < len(sentences)
def _get_golden_context(self, item: dict[str, Any]) -> str:
"""Extracts and formats the golden context from supporting facts."""
# Create a mapping of title to sentences for easy lookup
context_dict = {title: sentences for (title, sentences) in item["context"]}
# Get all supporting facts in order
golden_contexts = []
for title, sentence_idx in item["supporting_facts"]:
sentences = context_dict.get(title, [])
if not self._is_valid_supporting_fact(sentences, sentence_idx):
continue
golden_contexts.append(f"{title}: {sentences[sentence_idx]}")
return "\n".join(golden_contexts)
def _process_item(
self,
item: dict[str, Any],
corpus_list: List[str],
question_answer_pairs: List[dict[str, Any]],
load_golden_context: bool = False,
) -> None:
"""Processes a single item and adds it to the corpus and QA pairs."""
for title, sentences in item["context"]:
corpus_list.append(" ".join(sentences))
qa_pair = {
"question": item["question"],
"answer": item["answer"].lower(),
self.metadata_field_name: item[self.metadata_field_name],
}
if load_golden_context:
qa_pair["golden_context"] = self._get_golden_context(item)
question_answer_pairs.append(qa_pair)
def load_corpus(
self, limit: Optional[int] = None, seed: int = 42
) -> tuple[list[str], list[dict[str, Any]]]:
self, limit: Optional[int] = None, seed: int = 42, load_golden_context: bool = False
) -> Tuple[List[str], List[dict[str, Any]]]:
"""Loads and processes the HotpotQA corpus, optionally with golden context."""
filename = self.dataset_info["filename"]
if os.path.exists(filename):
@ -36,16 +82,8 @@ class HotpotQAAdapter(BaseBenchmarkAdapter):
corpus_list = []
question_answer_pairs = []
for item in corpus_json:
for title, sentences in item["context"]:
corpus_list.append(" ".join(sentences))
question_answer_pairs.append(
{
"question": item["question"],
"answer": item["answer"].lower(),
"level": item["level"],
}
)
for item in corpus_json:
self._process_item(item, corpus_list, question_answer_pairs, load_golden_context)
return corpus_list, question_answer_pairs

View file

@ -1,7 +1,7 @@
import os
import json
import random
from typing import Optional, Any
from typing import Optional, Any, List
import zipfile
import gdown
@ -10,38 +10,71 @@ from evals.eval_framework.benchmark_adapters.base_benchmark_adapter import BaseB
class MusiqueQAAdapter(BaseBenchmarkAdapter):
"""
Adapter to load and process the Musique QA dataset from a local .jsonl file.
Optionally downloads and unzips the dataset if it does not exist locally.
"""
"""Adapter for the Musique QA dataset with local file loading and optional download."""
dataset_info = {
# Name of the final file we want to load
"filename": "data/musique_ans_v1.0_dev.jsonl",
# A Google Drive URL (or share link) to the ZIP containing this file
"download_url": "https://drive.google.com/file/d/1tGdADlNjWFaHLeZZGShh2IRcpO6Lv24h/view?usp=sharing",
# The name of the ZIP archive we expect after downloading
"zip_filename": "musique_v1.0.zip",
}
def _get_golden_context(self, item: dict[str, Any]) -> str:
"""Extracts golden context from question decomposition and supporting paragraphs."""
golden_context = []
paragraphs = item.get("paragraphs", [])
# Process each decomposition step
for step in item.get("question_decomposition", []):
# Add the supporting paragraph if available
support_idx = step.get("paragraph_support_idx")
if isinstance(support_idx, int) and 0 <= support_idx < len(paragraphs):
para = paragraphs[support_idx]
golden_context.append(f"{para['title']}: {para['paragraph_text']}")
# Add the step's question and answer
golden_context.append(f"Q: {step['question']}")
golden_context.append(f"A: {step['answer']}")
golden_context.append("") # Empty line between steps
return "\n".join(golden_context)
def _process_item(
self,
item: dict[str, Any],
corpus_list: List[str],
question_answer_pairs: List[dict[str, Any]],
load_golden_context: bool = False,
) -> None:
"""Processes a single item and adds it to the corpus and QA pairs."""
# Add paragraphs to corpus
paragraphs = item.get("paragraphs", [])
for paragraph in paragraphs:
corpus_list.append(paragraph["paragraph_text"])
# Create QA pair
qa_pair = {
"id": item.get("id", ""),
"question": item.get("question", ""),
"answer": item.get("answer", "").lower()
if isinstance(item.get("answer"), str)
else item.get("answer"),
}
if load_golden_context:
qa_pair["golden_context"] = self._get_golden_context(item)
question_answer_pairs.append(qa_pair)
def load_corpus(
self,
limit: Optional[int] = None,
seed: int = 42,
load_golden_context: bool = False,
auto_download: bool = True,
) -> tuple[list[str], list[dict[str, Any]]]:
"""
Loads the Musique QA dataset.
:param limit: If set, randomly sample 'limit' items.
:param seed: Random seed for sampling.
:param auto_download: If True, attempt to download + unzip the dataset
from Google Drive if the .jsonl file is not present locally.
:return: (corpus_list, question_answer_pairs)
"""
"""Loads and processes the Musique QA dataset."""
target_filename = self.dataset_info["filename"]
# 1. Ensure the file is locally available; optionally download if missing
if not os.path.exists(target_filename):
if auto_download:
self._musique_download_file()
@ -62,29 +95,12 @@ class MusiqueQAAdapter(BaseBenchmarkAdapter):
question_answer_pairs = []
for item in data:
# Each 'paragraphs' is a list of dicts; we can concatenate their 'paragraph_text'
paragraphs = item.get("paragraphs", [])
for paragraph in paragraphs:
corpus_list.append(paragraph["paragraph_text"])
question = item.get("question", "")
answer = item.get("answer", "")
question_answer_pairs.append(
{
"id": item.get("id", ""),
"question": question,
"answer": answer.lower() if isinstance(answer, str) else answer,
}
)
self._process_item(item, corpus_list, question_answer_pairs, load_golden_context)
return corpus_list, question_answer_pairs
def _musique_download_file(self) -> None:
"""
Download and unzip the Musique dataset if not already present locally.
Uses gdown for Google Drive links.
"""
"""Downloads and unzips the Musique dataset if not present locally."""
url = self.dataset_info["download_url"]
zip_filename = self.dataset_info["zip_filename"]
target_filename = self.dataset_info["filename"]

View file

@ -2,48 +2,27 @@ import requests
import os
import json
import random
from typing import Optional, Any
from evals.eval_framework.benchmark_adapters.base_benchmark_adapter import BaseBenchmarkAdapter
from typing import Optional, Any, List, Tuple
from evals.eval_framework.benchmark_adapters.hotpot_qa_adapter import HotpotQAAdapter
class TwoWikiMultihopAdapter(BaseBenchmarkAdapter):
class TwoWikiMultihopAdapter(HotpotQAAdapter):
dataset_info = {
"filename": "2wikimultihop_dev.json",
"URL": "https://huggingface.co/datasets/voidful/2WikiMultihopQA/resolve/main/dev.json",
"url": "https://huggingface.co/datasets/voidful/2WikiMultihopQA/resolve/main/dev.json",
}
def load_corpus(
self, limit: Optional[int] = None, seed: int = 42
) -> tuple[list[str], list[dict[str, Any]]]:
filename = self.dataset_info["filename"]
def __init__(self):
super().__init__()
self.metadata_field_name = "type"
if os.path.exists(filename):
with open(filename, "r", encoding="utf-8") as f:
corpus_json = json.load(f)
else:
response = requests.get(self.dataset_info["URL"])
response.raise_for_status()
corpus_json = response.json()
def _get_golden_context(self, item: dict[str, Any]) -> str:
"""Extracts and formats the golden context from supporting facts and adds evidence if available."""
golden_context = super()._get_golden_context(item)
with open(filename, "w", encoding="utf-8") as f:
json.dump(corpus_json, f, ensure_ascii=False, indent=4)
if "evidences" in item:
golden_context += "\nEvidence fact triplets:"
for subject, relation, obj in item["evidences"]:
golden_context += f"\n{subject} - {relation} - {obj}"
if limit is not None and 0 < limit < len(corpus_json):
random.seed(seed)
corpus_json = random.sample(corpus_json, limit)
corpus_list = []
question_answer_pairs = []
for dict in corpus_json:
for title, sentences in dict["context"]:
corpus_list.append(" ".join(sentences))
question_answer_pairs.append(
{
"question": dict["question"],
"answer": dict["answer"].lower(),
"type": dict["type"],
}
)
return corpus_list, question_answer_pairs
return golden_context