Eval function takes eval_metric as input. Works with deepeval metrics like AnswerRelevancyMetric
This commit is contained in:
parent
f47b185a9e
commit
4aa634d5e1
1 changed files with 39 additions and 33 deletions
|
|
@ -4,13 +4,14 @@ import json
|
|||
import statistics
|
||||
from pathlib import Path
|
||||
|
||||
import deepeval.metrics
|
||||
import wget
|
||||
from deepeval.dataset import EvaluationDataset
|
||||
from deepeval.metrics import GEval
|
||||
from deepeval.test_case import LLMTestCase, LLMTestCaseParams
|
||||
from deepeval.test_case import LLMTestCase
|
||||
from tqdm import tqdm
|
||||
|
||||
import cognee
|
||||
import evals.deepeval_metrics
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.base_config import get_base_config
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
|
|
@ -34,7 +35,6 @@ async def answer_without_cognee(instance):
|
|||
return answer_prediction
|
||||
|
||||
async def answer_with_cognee(instance):
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
for (title, sentences) in instance["context"]:
|
||||
|
|
@ -60,20 +60,23 @@ async def answer_with_cognee(instance):
|
|||
)
|
||||
return answer_prediction
|
||||
|
||||
correctness_metric = GEval(
|
||||
name="Correctness",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[
|
||||
LLMTestCaseParams.ACTUAL_OUTPUT,
|
||||
LLMTestCaseParams.EXPECTED_OUTPUT
|
||||
],
|
||||
evaluation_steps=[
|
||||
"Determine whether the actual output is factually correct based on the expected output."
|
||||
]
|
||||
)
|
||||
|
||||
async def eval_answers(instances, answers, eval_metric):
|
||||
test_cases = []
|
||||
for i in range(len(answers)):
|
||||
instance = instances[i]
|
||||
answer = answers[i]
|
||||
test_case = LLMTestCase(
|
||||
input=instance["question"],
|
||||
actual_output=answer,
|
||||
expected_output=instance["answer"]
|
||||
)
|
||||
test_cases.append(test_case)
|
||||
evalset = EvaluationDataset(test_cases)
|
||||
evalresults = evalset.evaluate([eval_metric])
|
||||
return evalresults
|
||||
|
||||
async def eval_correctness(with_cognee=True, num_samples=None):
|
||||
async def eval_on_hotpotQA(answer_provider, num_samples, eval_metric):
|
||||
base_config = get_base_config()
|
||||
data_root_dir = base_config.data_root_directory
|
||||
filepath = data_root_dir / Path("hotpot_dev_fullwiki_v1.json")
|
||||
|
|
@ -82,29 +85,32 @@ async def eval_correctness(with_cognee=True, num_samples=None):
|
|||
wget.download(url, out=data_root_dir)
|
||||
with open(filepath, "r") as file:
|
||||
dataset = json.load(file)
|
||||
test_cases = []
|
||||
if not num_samples:
|
||||
num_samples = len(dataset)
|
||||
for instance in tqdm(dataset[:num_samples], desc="Evaluating correctness"):
|
||||
if with_cognee:
|
||||
answer = await answer_with_cognee(instance)
|
||||
else:
|
||||
answer = await answer_without_cognee(instance)
|
||||
test_case = LLMTestCase(
|
||||
input=instance["question"],
|
||||
actual_output=answer,
|
||||
expected_output=instance["answer"]
|
||||
)
|
||||
test_cases.append(test_case)
|
||||
evalset = EvaluationDataset(test_cases)
|
||||
evalresults = evalset.evaluate([correctness_metric])
|
||||
avg_correctness = statistics.mean([result.metrics_data[0].score for result in evalresults.test_results])
|
||||
return avg_correctness
|
||||
instances = dataset[:num_samples]
|
||||
answers = []
|
||||
for instance in tqdm(instances, desc="Getting answers"):
|
||||
answer = await answer_provider(instance)
|
||||
answers.append(answer)
|
||||
evalresults = await eval_answers(instances, answers, eval_metric)
|
||||
avg_score = statistics.mean([result.metrics_data[0].score for result in evalresults.test_results])
|
||||
return avg_score
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--with_cognee", action="store_true")
|
||||
parser.add_argument("--num_samples", type=int, default=500)
|
||||
parser.add_argument("--metric", type=str, default="correctness_metric")
|
||||
args = parser.parse_args()
|
||||
avg_correctness = asyncio.run(eval_correctness(args.with_cognee, args.num_samples))
|
||||
print(f"Average correctness: {avg_correctness}")
|
||||
|
||||
try:
|
||||
metric_cls = getattr(deepeval.metrics, args.metric)
|
||||
metric = metric_cls()
|
||||
except AttributeError:
|
||||
metric = getattr(evals.deepeval_metrics, args.metric)
|
||||
if args.with_cognee:
|
||||
answer_provider = answer_with_cognee
|
||||
else:
|
||||
answer_provider = answer_without_cognee
|
||||
avg_score = asyncio.run(eval_on_hotpotQA(answer_provider, args.num_samples, metric))
|
||||
print(f"Average {args.metric}: {avg_score}")
|
||||
Loading…
Add table
Reference in a new issue