Merge branch 'dev' into COG-970-refactor-tokenizing

This commit is contained in:
Igor Ilic 2025-01-28 10:12:55 +01:00
commit 49f60971bb
15 changed files with 2180 additions and 1010 deletions

24
.github/workflows/clean_stale_pr.yaml vendored Normal file
View file

@ -0,0 +1,24 @@
name: clean | remove stale PRs
on:
# Run this action periodically (daily at 0:00 UTC in this example).
schedule:
- cron: "0 0 * * *"
# Optionally, also run when pull requests are labeled, unlabeled, synchronized, or reopened
# to update the stale timer as needed. Uncomment if desired.
# pull_request:
# types: [labeled, unlabeled, synchronize, reopened]
jobs:
stale:
runs-on: ubuntu-latest
steps:
- name: Mark and Close Stale
uses: actions/stale@v6
with:
# Number of days of inactivity before the pull request is marked stale
days-before-stale: 60
# Number of days of inactivity after being marked stale before the pull request is closed
days-before-close: 7
# Comment to post when marking as stale
stale-pr-message: "This pull request has been automatically marke

View file

@ -12,7 +12,11 @@ We build for developers who need a reliable, production-ready data layer for AI
## What is cognee?
Cognee implements scalable, modular ECL (Extract, Cognify, Load) pipelines that allow you to interconnect and retrieve past conversations, documents, and audio transcriptions while reducing hallucinations, developer effort, and cost.
Cognee implements scalable, modular ECL (Extract, Cognify, Load) pipelines that allow you to interconnect and retrieve past conversations, documents, and audio transcriptions while reducing hallucinations, developer effort, and cost.
Cognee merges graph and vector databases to uncover hidden relationships and new patterns in your data. You can automatically model, load and retrieve entities and objects representing your business domain and analyze their relationships, uncovering insights that neither vector stores nor graph stores alone can provide. Learn more about use-cases [here](https://docs.cognee.ai/use_cases)
Try it in a Google Colab <a href="https://colab.research.google.com/drive/1g-Qnx6l_ecHZi0IOw23rg0qC4TYvEvWZ?usp=sharing">notebook</a> or have a look at our <a href="https://docs.cognee.ai">documentation</a>
If you have questions, join our <a href="https://discord.gg/NQPKmU5CCg">Discord</a> community
@ -217,10 +221,11 @@ Cognee supports a variety of tools and services for different operations:
## Demo
Check out our demo notebook [here](https://github.com/topoteretes/cognee/blob/main/notebooks/cognee_demo.ipynb)
Check out our demo notebook [here](https://github.com/topoteretes/cognee/blob/main/notebooks/cognee_demo.ipynb) or watch the Youtube video bellow
[<img src="https://i3.ytimg.com/vi/-ARUfIzhzC4/maxresdefault.jpg" width="100%">](https://www.youtube.com/watch?v=BDFt4xVPmro "Learn about cognee: 55")
[<img src="https://img.youtube.com/vi/fI4hDzguN5k/maxresdefault.jpg" width="100%">](https://www.youtube.com/watch?v=fI4hDzguN5k "Learn about cognee: 55")
## Get Started

View file

@ -1,6 +1,8 @@
from .server import mcp
from .server import main as server_main
def main():
"""Main entry point for the package."""
mcp.run(transport="stdio")
import asyncio
asyncio.run(server_main())

15
cognee-mcp/src/client.py Normal file → Executable file
View file

@ -4,8 +4,8 @@ from mcp.client.stdio import stdio_client
# Create server parameters for stdio connection
server_params = StdioServerParameters(
command="mcp", # Executable
args=["run", "src/server.py"], # Optional command line arguments
command="uv", # Executable
args=["--directory", ".", "run", "cognee"], # Optional command line arguments
env=None, # Optional environment variables
)
@ -33,10 +33,15 @@ async def run():
async with ClientSession(read, write, timedelta(minutes=3)) as session:
await session.initialize()
toolResult = await session.call_tool("cognify", arguments={"text": text})
# toolResult = await session.call_tool("search", arguments={"search_query": "AI"})
toolResult = await session.list_tools()
print(f"Cognify result: {toolResult}")
toolResult = await session.call_tool("prune", arguments={})
toolResult = await session.call_tool("cognify", arguments={"text": text})
toolResult = await session.call_tool("search", arguments={"search_query": "AI"})
print(f"Cognify result: {toolResult.content}")
if __name__ == "__main__":

120
cognee-mcp/src/server.py Normal file → Executable file
View file

@ -1,16 +1,97 @@
import os
import cognee
import logging
import importlib.util
from contextlib import redirect_stderr, redirect_stdout
# from PIL import Image as PILImage
from mcp.server.fastmcp import FastMCP
import mcp.types as types
from mcp.server import Server, NotificationOptions
from mcp.server.models import InitializationOptions
from cognee.api.v1.search import SearchType
from cognee.shared.data_models import KnowledgeGraph
mcp = FastMCP("cognee", timeout=120000)
mcp = Server("cognee")
logger = logging.getLogger(__name__)
@mcp.list_tools()
async def list_tools() -> list[types.Tool]:
return [
types.Tool(
name="cognify",
description="Cognifies text into knowledge graph",
inputSchema={
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The text to cognify",
},
"graph_model_file": {
"type": "string",
"description": "The path to the graph model file",
},
"graph_model_name": {
"type": "string",
"description": "The name of the graph model",
},
},
"required": ["text"],
},
),
types.Tool(
name="search",
description="Searches for information in knowledge graph",
inputSchema={
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "The query to search for",
},
},
"required": ["search_query"],
},
),
types.Tool(
name="prune",
description="Prunes knowledge graph",
inputSchema={
"type": "object",
"properties": {},
},
),
]
@mcp.call_tool()
async def call_tools(name: str, arguments: dict) -> list[types.TextContent]:
try:
with open(os.devnull, "w") as fnull:
with redirect_stdout(fnull), redirect_stderr(fnull):
if name == "cognify":
await cognify(
text=arguments["text"],
graph_model_file=arguments.get("graph_model_file", None),
graph_model_name=arguments.get("graph_model_name", None),
)
return [types.TextContent(type="text", text="Ingested")]
elif name == "search":
search_results = await search(arguments["search_query"])
return [types.TextContent(type="text", text=search_results)]
elif name == "prune":
await prune()
return [types.TextContent(type="text", text="Pruned")]
except Exception as e:
logger.error(f"Error calling tool '{name}': {str(e)}")
return [types.TextContent(type="text", text=f"Error calling tool '{name}': {str(e)}")]
@mcp.tool()
async def cognify(text: str, graph_model_file: str = None, graph_model_name: str = None) -> str:
"""Build knowledge graph from the input text"""
if graph_model_file and graph_model_name:
@ -25,10 +106,7 @@ async def cognify(text: str, graph_model_file: str = None, graph_model_name: str
except Exception as e:
raise ValueError(f"Failed to cognify: {str(e)}")
return "Ingested"
@mcp.tool()
async def search(search_query: str) -> str:
"""Search the knowledge graph"""
search_results = await cognee.search(SearchType.INSIGHTS, query_text=search_query)
@ -38,16 +116,36 @@ async def search(search_query: str) -> str:
return results
@mcp.tool()
async def prune() -> str:
"""Reset the knowledge graph"""
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
return "Pruned"
async def main():
try:
from mcp.server.stdio import stdio_server
async with stdio_server() as (read_stream, write_stream):
await mcp.run(
read_stream=read_stream,
write_stream=write_stream,
initialization_options=InitializationOptions(
server_name="cognee",
server_version="0.1.0",
capabilities=mcp.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
raise_exceptions=True,
)
except Exception as e:
logger.error(f"Server failed to start: {str(e)}", exc_info=True)
raise
# @mcp.tool()
# async def visualize() -> Image:
# """Visualize the knowledge graph"""
# try:
@ -116,4 +214,6 @@ def load_class(model_file, model_name):
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport="stdio")
import asyncio
asyncio.run(main())

89
cognee-mcp/uv.lock generated
View file

@ -1,7 +1,9 @@
version = 1
requires-python = ">=3.10"
resolution-markers = [
"python_full_version >= '3.12'",
"python_full_version >= '3.13'",
"python_full_version >= '3.12.4' and python_full_version < '3.13'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
"python_full_version == '3.11.*'",
"python_full_version < '3.11'",
]
@ -534,7 +536,7 @@ requires-dist = [
{ name = "deepeval", marker = "extra == 'deepeval'", specifier = ">=2.0.1,<3.0.0" },
{ name = "dlt", extras = ["sqlalchemy"], specifier = ">=1.4.1,<2.0.0" },
{ name = "falkordb", marker = "extra == 'falkordb'", specifier = "==1.0.9" },
{ name = "fastapi", specifier = ">=0.109.2,<0.116.0" },
{ name = "fastapi", specifier = "==0.115.7" },
{ name = "fastapi-users", extras = ["sqlalchemy"], specifier = "==14.0.0" },
{ name = "filetype", specifier = ">=1.2.0,<2.0.0" },
{ name = "graphistry", specifier = ">=0.33.5,<0.34.0" },
@ -542,6 +544,7 @@ requires-dist = [
{ name = "gunicorn", specifier = ">=20.1.0,<21.0.0" },
{ name = "httpx", specifier = "==0.27.0" },
{ name = "instructor", specifier = "==1.7.2" },
{ name = "jedi", marker = "extra == 'codegraph'", specifier = ">=0.19.2,<0.20.0" },
{ name = "jinja2", specifier = ">=3.1.3,<4.0.0" },
{ name = "lancedb", specifier = "==0.16.0" },
{ name = "langchain-text-splitters", marker = "extra == 'langchain'", specifier = "==0.3.2" },
@ -558,6 +561,7 @@ requires-dist = [
{ name = "numpy", specifier = "==1.26.4" },
{ name = "openai", specifier = "==1.59.4" },
{ name = "pandas", specifier = "==2.2.3" },
{ name = "parso", marker = "extra == 'codegraph'", specifier = ">=0.8.4,<0.9.0" },
{ name = "pgvector", marker = "extra == 'postgres'", specifier = ">=0.3.5,<0.4.0" },
{ name = "posthog", marker = "extra == 'posthog'", specifier = ">=3.5.0,<4.0.0" },
{ name = "pre-commit", specifier = ">=4.0.1,<5.0.0" },
@ -863,16 +867,16 @@ wheels = [
[[package]]
name = "fastapi"
version = "0.115.6"
version = "0.115.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pydantic" },
{ name = "starlette" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/93/72/d83b98cd106541e8f5e5bfab8ef2974ab45a62e8a6c5b5e6940f26d2ed4b/fastapi-0.115.6.tar.gz", hash = "sha256:9ec46f7addc14ea472958a96aae5b5de65f39721a46aaf5705c480d9a8b76654", size = 301336 }
sdist = { url = "https://files.pythonhosted.org/packages/a2/f5/3f921e59f189e513adb9aef826e2841672d50a399fead4e69afdeb808ff4/fastapi-0.115.7.tar.gz", hash = "sha256:0f106da6c01d88a6786b3248fb4d7a940d071f6f488488898ad5d354b25ed015", size = 293177 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/52/b3/7e4df40e585df024fac2f80d1a2d579c854ac37109675db2b0cc22c0bb9e/fastapi-0.115.6-py3-none-any.whl", hash = "sha256:e9240b29e36fa8f4bb7290316988e90c381e5092e0cbe84e7818cc3713bcf305", size = 94843 },
{ url = "https://files.pythonhosted.org/packages/e6/7f/bbd4dcf0faf61bc68a01939256e2ed02d681e9334c1a3cef24d5f77aba9f/fastapi-0.115.7-py3-none-any.whl", hash = "sha256:eb6a8c8bf7f26009e8147111ff15b5177a0e19bb4a45bc3486ab14804539d21e", size = 94777 },
]
[[package]]
@ -2339,44 +2343,34 @@ bcrypt = [
[[package]]
name = "pyarrow"
version = "19.0.0"
version = "15.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/7b/01/fe1fd04744c2aa038e5a11c7a4adb3d62bce09798695e54f7274b5977134/pyarrow-19.0.0.tar.gz", hash = "sha256:8d47c691765cf497aaeed4954d226568563f1b3b74ff61139f2d77876717084b", size = 1129096 }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b3/1b/bc36a07706f630709bfd5a7936d2875e153e3d084a6d95dae583c3ad9de7/pyarrow-15.0.0.tar.gz", hash = "sha256:876858f549d540898f927eba4ef77cd549ad8d24baa3207cf1b72e5788b50e83", size = 1063077 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/1c/02/1ad80ffd3c558916858a49c83b6e494a9d93009bbebc603cf0cb8263bea7/pyarrow-19.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c318eda14f6627966997a7d8c374a87d084a94e4e38e9abbe97395c215830e0c", size = 30686262 },
{ url = "https://files.pythonhosted.org/packages/1b/f0/adab5f142eb8203db8bfbd3a816816e37a85423ae684567e7f3555658315/pyarrow-19.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:62ef8360ff256e960f57ce0299090fb86423afed5e46f18f1225f960e05aae3d", size = 32100005 },
{ url = "https://files.pythonhosted.org/packages/94/8b/e674083610e5efc48d2f205c568d842cdfdf683d12f9ff0d546e38757722/pyarrow-19.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2795064647add0f16563e57e3d294dbfc067b723f0fd82ecd80af56dad15f503", size = 41144815 },
{ url = "https://files.pythonhosted.org/packages/d5/fb/2726241a792b7f8a58789e5a63d1be9a5a4059206318fd0ff9485a578952/pyarrow-19.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a218670b26fb1bc74796458d97bcab072765f9b524f95b2fccad70158feb8b17", size = 42180380 },
{ url = "https://files.pythonhosted.org/packages/7d/09/7aef12446d8e7002dfc07bb7bc71f594c1d5844ca78b364a49f07efb65b1/pyarrow-19.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:66732e39eaa2247996a6b04c8aa33e3503d351831424cdf8d2e9a0582ac54b34", size = 40515021 },
{ url = "https://files.pythonhosted.org/packages/31/55/f05fc5608cc96060c2b24de505324d641888bd62d4eed2fa1dacd872a1e1/pyarrow-19.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:e675a3ad4732b92d72e4d24009707e923cab76b0d088e5054914f11a797ebe44", size = 42067488 },
{ url = "https://files.pythonhosted.org/packages/f0/01/097653cec7a944c16313cb748a326771133c142034b252076bd84743b98d/pyarrow-19.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:f094742275586cdd6b1a03655ccff3b24b2610c3af76f810356c4c71d24a2a6c", size = 25276726 },
{ url = "https://files.pythonhosted.org/packages/82/42/fba3a35bef5833bf88ed35e6a810dc1781236e1d4f808d2df824a7d21819/pyarrow-19.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:8e3a839bf36ec03b4315dc924d36dcde5444a50066f1c10f8290293c0427b46a", size = 30711936 },
{ url = "https://files.pythonhosted.org/packages/88/7a/0da93a3eaaf251a30e32f3221e874263cdcd366c2cd6b7c05293aad91152/pyarrow-19.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:ce42275097512d9e4e4a39aade58ef2b3798a93aa3026566b7892177c266f735", size = 32133182 },
{ url = "https://files.pythonhosted.org/packages/2f/df/fe43b1c50d3100d0de53f988344118bc20362d0de005f8a407454fa565f8/pyarrow-19.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9348a0137568c45601b031a8d118275069435f151cbb77e6a08a27e8125f59d4", size = 41145489 },
{ url = "https://files.pythonhosted.org/packages/45/bb/6f73b41b342a0342f2516a02db4aa97a4f9569cc35482a5c288090140cd4/pyarrow-19.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a0144a712d990d60f7f42b7a31f0acaccf4c1e43e957f7b1ad58150d6f639c1", size = 42177823 },
{ url = "https://files.pythonhosted.org/packages/23/7b/f038a96f421e453a71bd7a0f78d62b1b2ae9bcac06ed51179ca532e6a0a2/pyarrow-19.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2a1a109dfda558eb011e5f6385837daffd920d54ca00669f7a11132d0b1e6042", size = 40530609 },
{ url = "https://files.pythonhosted.org/packages/b8/39/a2a6714b471c000e6dd6af4495dce00d7d1332351b8e3170dfb9f91dad1f/pyarrow-19.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be686bf625aa7b9bada18defb3a3ea3981c1099697239788ff111d87f04cd263", size = 42081534 },
{ url = "https://files.pythonhosted.org/packages/6c/a3/8396fb06ca05d807e89980c177be26617aad15211ece3184e0caa730b8a6/pyarrow-19.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:239ca66d9a05844bdf5af128861af525e14df3c9591bcc05bac25918e650d3a2", size = 25281090 },
{ url = "https://files.pythonhosted.org/packages/bc/2e/152885f5ef421e80dae68b9c133ab261934f93a6d5e16b61d79c0ed597fb/pyarrow-19.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:a7bbe7109ab6198688b7079cbad5a8c22de4d47c4880d8e4847520a83b0d1b68", size = 30667964 },
{ url = "https://files.pythonhosted.org/packages/80/c2/08bbee9a8610a47c9a1466845f405baf53a639ddd947c5133d8ba13544b6/pyarrow-19.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:4624c89d6f777c580e8732c27bb8e77fd1433b89707f17c04af7635dd9638351", size = 32125039 },
{ url = "https://files.pythonhosted.org/packages/d2/56/06994df823212f5688d3c8bf4294928b12c9be36681872853655724d28c6/pyarrow-19.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b6d3ce4288793350dc2d08d1e184fd70631ea22a4ff9ea5c4ff182130249d9b", size = 41140729 },
{ url = "https://files.pythonhosted.org/packages/94/65/38ad577c98140a9db71e9e1e594b6adb58a7478a5afec6456a8ca2df7f70/pyarrow-19.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:450a7d27e840e4d9a384b5c77199d489b401529e75a3b7a3799d4cd7957f2f9c", size = 42202267 },
{ url = "https://files.pythonhosted.org/packages/b6/1f/966b722251a7354114ccbb71cf1a83922023e69efd8945ebf628a851ec4c/pyarrow-19.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:a08e2a8a039a3f72afb67a6668180f09fddaa38fe0d21f13212b4aba4b5d2451", size = 40505858 },
{ url = "https://files.pythonhosted.org/packages/3b/5e/6bc81aa7fc9affc7d1c03b912fbcc984ca56c2a18513684da267715dab7b/pyarrow-19.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f43f5aef2a13d4d56adadae5720d1fed4c1356c993eda8b59dace4b5983843c1", size = 42084973 },
{ url = "https://files.pythonhosted.org/packages/53/c3/2f56da818b6a4758cbd514957c67bd0f078ebffa5390ee2e2bf0f9e8defc/pyarrow-19.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:2f672f5364b2d7829ef7c94be199bb88bf5661dd485e21d2d37de12ccb78a136", size = 25241976 },
{ url = "https://files.pythonhosted.org/packages/f5/b9/ba07ed3dd6b6e4f379b78e9c47c50c8886e07862ab7fa6339ac38622d755/pyarrow-19.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:cf3bf0ce511b833f7bc5f5bb3127ba731e97222023a444b7359f3a22e2a3b463", size = 30651291 },
{ url = "https://files.pythonhosted.org/packages/ad/10/0d304243c8277035298a68a70807efb76199c6c929bb3363c92ac9be6a0d/pyarrow-19.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:4d8b0c0de0a73df1f1bf439af1b60f273d719d70648e898bc077547649bb8352", size = 32100461 },
{ url = "https://files.pythonhosted.org/packages/8a/61/bcfc5182e11831bca3f849945b9b106e09fd10ded773dff466658e972a45/pyarrow-19.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92aff08e23d281c69835e4a47b80569242a504095ef6a6223c1f6bb8883431d", size = 41132491 },
{ url = "https://files.pythonhosted.org/packages/8e/87/2915a29049ec352dc69a967fbcbd76b0180319233de0daf8bd368df37099/pyarrow-19.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3b78eff5968a1889a0f3bc81ca57e1e19b75f664d9c61a42a604bf9d8402aae", size = 42192529 },
{ url = "https://files.pythonhosted.org/packages/48/18/44e5542b2707a8afaf78b5b88c608f261871ae77787eac07b7c679ca6f0f/pyarrow-19.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:b34d3bde38eba66190b215bae441646330f8e9da05c29e4b5dd3e41bde701098", size = 40495363 },
{ url = "https://files.pythonhosted.org/packages/ba/d6/5096deb7599bbd20bc2768058fe23bc725b88eb41bee58303293583a2935/pyarrow-19.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:5418d4d0fab3a0ed497bad21d17a7973aad336d66ad4932a3f5f7480d4ca0c04", size = 42074075 },
{ url = "https://files.pythonhosted.org/packages/2c/df/e3c839c04c284c9ec3d62b02a8c452b795d9b07b04079ab91ce33484d4c5/pyarrow-19.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:e82c3d5e44e969c217827b780ed8faf7ac4c53f934ae9238872e749fa531f7c9", size = 25239803 },
{ url = "https://files.pythonhosted.org/packages/6a/d3/a6d4088e906c7b5d47792256212606d2ae679046dc750eee0ae167338e5c/pyarrow-19.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:f208c3b58a6df3b239e0bb130e13bc7487ed14f39a9ff357b6415e3f6339b560", size = 30695401 },
{ url = "https://files.pythonhosted.org/packages/94/25/70040fd0e397dd1b937f459eaeeec942a76027357491dca0ada09d1322af/pyarrow-19.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:c751c1c93955b7a84c06794df46f1cec93e18610dcd5ab7d08e89a81df70a849", size = 32104680 },
{ url = "https://files.pythonhosted.org/packages/4e/f9/92783290cc0d80ca16d34b0c126305bfacca4b87dd889c8f16c6ef2a8fd7/pyarrow-19.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b903afaa5df66d50fc38672ad095806443b05f202c792694f3a604ead7c6ea6e", size = 41076754 },
{ url = "https://files.pythonhosted.org/packages/05/46/2c9870f50a495c72e2b8982ae29a9b1680707ea936edc0de444cec48f875/pyarrow-19.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a22a4bc0937856263df8b94f2f2781b33dd7f876f787ed746608e06902d691a5", size = 42163133 },
{ url = "https://files.pythonhosted.org/packages/7b/2f/437922b902549228fb15814e8a26105bff2787ece466a8d886eb6699efad/pyarrow-19.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:5e8a28b918e2e878c918f6d89137386c06fe577cd08d73a6be8dafb317dc2d73", size = 40452210 },
{ url = "https://files.pythonhosted.org/packages/36/ef/1d7975053af9d106da973bac142d0d4da71b7550a3576cc3e0b3f444d21a/pyarrow-19.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:29cd86c8001a94f768f79440bf83fee23963af5e7bc68ce3a7e5f120e17edf89", size = 42077618 },
{ url = "https://files.pythonhosted.org/packages/33/de/8d8b373d0af779b5866f88ce2ba3774c7c36f712a1d00ed3251263325a2d/pyarrow-15.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0a524532fd6dd482edaa563b686d754c70417c2f72742a8c990b322d4c03a15d", size = 27135268 },
{ url = "https://files.pythonhosted.org/packages/af/f0/f2145665535384d7048b60955aff4d90650e342d2131bfc23e27c4c6ea09/pyarrow-15.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a6bdb314affa9c2e0d5dddf3d9cbb9ef4a8dddaa68669975287d47ece67642", size = 24191267 },
{ url = "https://files.pythonhosted.org/packages/a9/e4/151ac8f5cb3fc51c80dbc8bc091a35674a896893eca97af3ed42ca47759f/pyarrow-15.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66958fd1771a4d4b754cd385835e66a3ef6b12611e001d4e5edfcef5f30391e2", size = 36140271 },
{ url = "https://files.pythonhosted.org/packages/e5/d9/46f20f4ec32211534906eca1cc4156587fb06f6bce99fc73561c8e22a4a6/pyarrow-15.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f500956a49aadd907eaa21d4fff75f73954605eaa41f61cb94fb008cf2e00c6", size = 38391410 },
{ url = "https://files.pythonhosted.org/packages/5e/db/2c843e78e4e5f66c2a477a4f41989726e26e307e87d383928904f370aa3e/pyarrow-15.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6f87d9c4f09e049c2cade559643424da84c43a35068f2a1c4653dc5b1408a929", size = 35634137 },
{ url = "https://files.pythonhosted.org/packages/d4/ca/ef67abb77f9dd51a0d3ff7fcebff58296068a046d7da352b9548070005ed/pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85239b9f93278e130d86c0e6bb455dcb66fc3fd891398b9d45ace8799a871a1e", size = 38313696 },
{ url = "https://files.pythonhosted.org/packages/5d/22/8fa2146c63476c14902c0cbeb34c363fb577745ee1d8bf69bd4a3a42e005/pyarrow-15.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5b8d43e31ca16aa6e12402fcb1e14352d0d809de70edd185c7650fe80e0769e3", size = 24806824 },
{ url = "https://files.pythonhosted.org/packages/d5/fd/e7865a352e416f34057d6d6241c43d28901a67ce7531dca28c22fd4a6f36/pyarrow-15.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:fa7cd198280dbd0c988df525e50e35b5d16873e2cdae2aaaa6363cdb64e3eec5", size = 27173202 },
{ url = "https://files.pythonhosted.org/packages/de/33/fce52082865c1ad58ee3673f7cfbd19d24651ac2598244f940db29758da6/pyarrow-15.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8780b1a29d3c8b21ba6b191305a2a607de2e30dab399776ff0aa09131e266340", size = 24212865 },
{ url = "https://files.pythonhosted.org/packages/3b/c5/7f6adcf6dbb286e68b61112ab29236e5fb0fa7aaed9b823ab00bceb77f48/pyarrow-15.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe0ec198ccc680f6c92723fadcb97b74f07c45ff3fdec9dd765deb04955ccf19", size = 36138202 },
{ url = "https://files.pythonhosted.org/packages/05/6d/8ab597e64dccb1fcd820e49cb381af7c25b8ea546a282eb30a1462e4acf7/pyarrow-15.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036a7209c235588c2f07477fe75c07e6caced9b7b61bb897c8d4e52c4b5f9555", size = 38386862 },
{ url = "https://files.pythonhosted.org/packages/96/9e/00a64865d4e8e25f81db8bee45a101e4316ae1a33d4323e621c5681feab9/pyarrow-15.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2bd8a0e5296797faf9a3294e9fa2dc67aa7f10ae2207920dbebb785c77e9dbe5", size = 35652300 },
{ url = "https://files.pythonhosted.org/packages/85/55/636f006d963ddf77270fd294163e149b0719aaaf794de0d023aee88f6335/pyarrow-15.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e8ebed6053dbe76883a822d4e8da36860f479d55a762bd9e70d8494aed87113e", size = 38327834 },
{ url = "https://files.pythonhosted.org/packages/db/1d/e8004776a69b5bad62b857367a9a2dff7c61d9606f341e549a174047349b/pyarrow-15.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:17d53a9d1b2b5bd7d5e4cd84d018e2a45bc9baaa68f7e6e3ebed45649900ba99", size = 24794223 },
{ url = "https://files.pythonhosted.org/packages/c0/54/408eec00be5afcc162f44e22c08d7127d7540e3827f5afaae8c8efaa8acb/pyarrow-15.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9950a9c9df24090d3d558b43b97753b8f5867fb8e521f29876aa021c52fda351", size = 27085537 },
{ url = "https://files.pythonhosted.org/packages/a9/42/cf26eb201829c2d7656132a18056cb1d2037752cefc658b5ab9225a7de6f/pyarrow-15.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:003d680b5e422d0204e7287bb3fa775b332b3fce2996aa69e9adea23f5c8f970", size = 24181544 },
{ url = "https://files.pythonhosted.org/packages/4e/bd/194d125b3bc539fcf5fdd7c114a67777e0f2f6411dc29523e900f857b421/pyarrow-15.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f75fce89dad10c95f4bf590b765e3ae98bcc5ba9f6ce75adb828a334e26a3d40", size = 36137717 },
{ url = "https://files.pythonhosted.org/packages/2e/92/35ca0cf2ca392172c8a269bd7b62bcc8fbcff32492c5cd9bcbbf1adf0541/pyarrow-15.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca9cb0039923bec49b4fe23803807e4ef39576a2bec59c32b11296464623dc2", size = 38399733 },
{ url = "https://files.pythonhosted.org/packages/fc/30/51adfac2367587073535dbd87da941d1a7f25d4ec2a71817bfe3e83277a5/pyarrow-15.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ed5a78ed29d171d0acc26a305a4b7f83c122d54ff5270810ac23c75813585e4", size = 35630638 },
{ url = "https://files.pythonhosted.org/packages/e7/4e/89fb1a40adbd6b09cc36ea295c1811135a9d9c1cd7f3716c36b5f0988777/pyarrow-15.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6eda9e117f0402dfcd3cd6ec9bfee89ac5071c48fc83a84f3075b60efa96747f", size = 38333186 },
{ url = "https://files.pythonhosted.org/packages/1a/f7/f6df7992ef2339bbf31ba349de19af5b8fd75590129c4e8fcb719f24fe5f/pyarrow-15.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9a3a6180c0e8f2727e6f1b1c87c72d3254cac909e609f35f22532e4115461177", size = 25263792 },
]
[[package]]
@ -3160,27 +3154,28 @@ wheels = [
[[package]]
name = "sse-starlette"
version = "2.2.1"
version = "2.1.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
{ name = "starlette" },
{ name = "uvicorn" },
]
sdist = { url = "https://files.pythonhosted.org/packages/71/a4/80d2a11af59fe75b48230846989e93979c892d3a20016b42bb44edb9e398/sse_starlette-2.2.1.tar.gz", hash = "sha256:54470d5f19274aeed6b2d473430b08b4b379ea851d953b11d7f1c4a2c118b419", size = 17376 }
sdist = { url = "https://files.pythonhosted.org/packages/72/fc/56ab9f116b2133521f532fce8d03194cf04dcac25f583cf3d839be4c0496/sse_starlette-2.1.3.tar.gz", hash = "sha256:9cd27eb35319e1414e3d2558ee7414487f9529ce3b3cf9b21434fd110e017169", size = 19678 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d9/e0/5b8bd393f27f4a62461c5cf2479c75a2cc2ffa330976f9f00f5f6e4f50eb/sse_starlette-2.2.1-py3-none-any.whl", hash = "sha256:6410a3d3ba0c89e7675d4c273a301d64649c03a5ef1ca101f10b47f895fd0e99", size = 10120 },
{ url = "https://files.pythonhosted.org/packages/52/aa/36b271bc4fa1d2796311ee7c7283a3a1c348bad426d37293609ca4300eef/sse_starlette-2.1.3-py3-none-any.whl", hash = "sha256:8ec846438b4665b9e8c560fcdea6bc8081a3abf7942faa95e5a744999d219772", size = 9383 },
]
[[package]]
name = "starlette"
version = "0.41.3"
version = "0.45.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
]
sdist = { url = "https://files.pythonhosted.org/packages/1a/4c/9b5764bd22eec91c4039ef4c55334e9187085da2d8a2df7bd570869aae18/starlette-0.41.3.tar.gz", hash = "sha256:0e4ab3d16522a255be6b28260b938eae2482f98ce5cc934cb08dce8dc3ba5835", size = 2574159 }
sdist = { url = "https://files.pythonhosted.org/packages/ff/fb/2984a686808b89a6781526129a4b51266f678b2d2b97ab2d325e56116df8/starlette-0.45.3.tar.gz", hash = "sha256:2cbcba2a75806f8a41c722141486f37c28e30a0921c5f6fe4346cb0dcee1302f", size = 2574076 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7", size = 73225 },
{ url = "https://files.pythonhosted.org/packages/d9/61/f2b52e107b1fc8944b33ef56bf6ac4ebbe16d91b94d2b87ce013bf63fb84/starlette-0.45.3-py3-none-any.whl", hash = "sha256:dfb6d332576f136ec740296c7e8bb8c8a7125044e7c6da30744718880cdd059d", size = 71507 },
]
[[package]]

View file

@ -77,14 +77,51 @@ class SQLAlchemyAdapter:
text(f"DROP TABLE IF EXISTS {schema_name}.{table_name} CASCADE;")
)
async def insert_data(self, schema_name: str, table_name: str, data: list[dict]):
columns = ", ".join(data[0].keys())
values = ", ".join([f"({', '.join([f':{key}' for key in row.keys()])})" for row in data])
insert_query = text(f"INSERT INTO {schema_name}.{table_name} ({columns}) VALUES {values};")
async def insert_data(
self,
table_name: str,
data: list[dict],
schema_name: Optional[str] = "public",
) -> int:
"""
Insert data into specified table using SQLAlchemy Core with batch optimization
Returns number of inserted rows
async with self.engine.begin() as connection:
await connection.execute(insert_query, data)
await connection.close()
Usage Example:
from cognee.infrastructure.databases.relational.get_relational_engine import get_relational_engine
from uuid import UUID
db = get_relational_engine()
table_name = "groups"
data = {
"id": UUID("c70a3cec-3309-44df-8ee6-eced820cf438"),
"name": "test"
}
await db.insert_data(table_name, data)
"""
if not data:
logger.info("No data provided for insertion")
return 0
try:
# Use SQLAlchemy Core insert with execution options
async with self.engine.begin() as conn:
# Dialect-agnostic table reference
if self.engine.dialect.name == "sqlite":
# Foreign key constraints are disabled by default in SQLite (for backwards compatibility),
# so must be enabled for each database connection/session separately.
await conn.execute(text("PRAGMA foreign_keys=ON"))
table = await self.get_table(table_name) # SQLite ignores schemas
else:
table = await self.get_table(table_name, schema_name)
result = await conn.execute(table.insert().values(data))
# Return rowcount for validation
return result.rowcount
except Exception as e:
logger.error(f"Insert failed: {str(e)}")
raise e # Re-raise for error handling upstream
async def get_schema_list(self) -> List[str]:
"""

View file

@ -14,9 +14,9 @@ from ...relational.ModelBase import Base
from ...relational.sqlalchemy.SqlAlchemyAdapter import SQLAlchemyAdapter
from ..embeddings.EmbeddingEngine import EmbeddingEngine
from ..models.ScoredResult import ScoredResult
from ..utils import normalize_distances
from ..vector_db_interface import VectorDBInterface
from .serialize_data import serialize_data
from ..utils import normalize_distances
class IndexSchema(DataPoint):
@ -247,12 +247,22 @@ class PGVectorAdapter(SQLAlchemyAdapter, VectorDBInterface):
# Extract distances and find min/max for normalization
for vector in closest_items:
# TODO: Add normalization of similarity score
vector_list.append(vector)
vector_list.append(
{
"id": UUID(str(vector.id)),
"payload": vector.payload,
"_distance": vector.similarity,
}
)
# Normalize vector distance and add this as score information to vector_list
normalized_values = normalize_distances(vector_list)
for i in range(0, len(normalized_values)):
vector_list[i]["score"] = normalized_values[i]
# Create and return ScoredResult objects
return [
ScoredResult(id=UUID(str(row.id)), payload=row.payload, score=row.similarity)
ScoredResult(id=row.get("id"), payload=row.get("payload"), score=row.get("score"))
for row in vector_list
]

View file

@ -26,10 +26,6 @@ class DataPoint(BaseModel):
topological_rank: Optional[int] = 0
_metadata: Optional[MetaData] = {"index_fields": [], "type": "DataPoint"}
# Override the Pydantic configuration
class Config:
underscore_attrs_are_private = True
@classmethod
def get_embeddable_data(self, data_point):
if (

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

@ -0,0 +1 @@
Subproject commit 130b84db9270734756d16918e5c86034777140fc

View file

@ -618,76 +618,339 @@
"cell_type": "markdown",
"id": "e519e30c0423c2a",
"metadata": {},
"source": "## Let's add evals"
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b22ae3d868fa5606",
"metadata": {
"ExecuteTime": {
"end_time": "2024-12-19T18:01:11.387716Z",
"start_time": "2024-12-19T18:01:11.278042Z"
}
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'deepeval'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mevals\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01meval_on_hotpot\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m eval_on_hotpotQA\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mevals\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01meval_on_hotpot\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m answer_with_cognee\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mevals\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01meval_on_hotpot\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m answer_without_cognee\n",
"File \u001b[0;32m~/cognee/evals/eval_on_hotpot.py:7\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mstatistics\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpathlib\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Path\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mdeepeval\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmetrics\u001b[39;00m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwget\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdeepeval\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdataset\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m EvaluationDataset\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'deepeval'"
]
}
],
"source": [
"from evals.eval_on_hotpot import eval_on_hotpotQA\n",
"from evals.eval_on_hotpot import answer_with_cognee\n",
"from evals.eval_on_hotpot import answer_without_cognee\n",
"from evals.eval_on_hotpot import eval_answers\n",
"from cognee.base_config import get_base_config\n",
"from pathlib import Path\n",
"from tqdm import tqdm\n",
"import wget\n",
"import json\n",
"import statistics"
"## Let's add evals"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "728355d390e3a01b",
"id": "3845443e",
"metadata": {},
"outputs": [],
"source": [
"!pip install \"cognee[deepeval]\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a2c3c70",
"metadata": {},
"outputs": [],
"source": [
"from evals.eval_on_hotpot import deepeval_answers, answer_qa_instance\n",
"from evals.qa_dataset_utils import load_qa_dataset\n",
"from evals.qa_metrics_utils import get_metrics\n",
"from evals.qa_context_provider_utils import qa_context_providers\n",
"from pathlib import Path\n",
"from tqdm import tqdm\n",
"import statistics\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53a609d8",
"metadata": {},
"outputs": [],
"source": [
"answer_provider = answer_with_cognee # For native LLM answers use answer_without_cognee\n",
"num_samples = 10 # With cognee, it takes ~1m10s per sample\n",
"dataset_name_or_filename = \"hotpotqa\"\n",
"dataset = load_qa_dataset(dataset_name_or_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7351ab8f",
"metadata": {},
"outputs": [],
"source": [
"context_provider_name = \"cognee\"\n",
"context_provider = qa_context_providers[context_provider_name]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9346115b",
"metadata": {},
"outputs": [],
"source": [
"random.seed(42)\n",
"instances = dataset if not num_samples else random.sample(dataset, num_samples)\n",
"\n",
"base_config = get_base_config()\n",
"data_root_dir = base_config.data_root_directory\n",
"out_path = \"out\" \n",
"if not Path(out_path).exists():\n",
" Path(out_path).mkdir()\n",
"contexts_filename = out_path / Path(\n",
" f\"contexts_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json\"\n",
" )\n",
"\n",
"if not Path(data_root_dir).exists():\n",
" Path(data_root_dir).mkdir()\n",
"\n",
"filepath = data_root_dir / Path(\"hotpot_dev_fullwiki_v1.json\")\n",
"if not filepath.exists():\n",
" url = \"http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json\"\n",
" wget.download(url, out=data_root_dir)\n",
"\n",
"with open(filepath, \"r\") as file:\n",
" dataset = json.load(file)\n",
"\n",
"instances = dataset if not num_samples else dataset[:num_samples]\n",
"answers = []\n",
"for instance in tqdm(instances, desc=\"Getting answers\"):\n",
" answer = answer_provider(instance)\n",
" answer = await answer_qa_instance(instance, context_provider, contexts_filename)\n",
" answers.append(answer)"
]
},
{
"cell_type": "markdown",
"id": "1e7d872d",
"metadata": {},
"source": [
"#### Define Metrics for Evaluation and Calculate Score\n",
"**Options**: \n",
"- **Correctness**: Is the actual output factually correct based on the expected output?\n",
"- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?\n",
"- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?\n",
"- **Empowerment**: How well does the answer help the reader understand and make informed judgements about the topic?\n",
"- **Directness**: How specifically and clearly does the answer address the question?\n",
"- **F1 Score**: the harmonic mean of the precision and recall, using word-level Exact Match\n",
"- **EM Score**: the rate at which the predicted strings exactly match their references, ignoring white spaces and capitalization."
]
},
{
"cell_type": "markdown",
"id": "c81e2b46",
"metadata": {},
"source": [
"##### Calculate `\"Correctness\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae728344",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"Correctness\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "764aac6d",
"metadata": {},
"outputs": [],
"source": [
"Correctness = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(Correctness)"
]
},
{
"cell_type": "markdown",
"id": "6d3bbdc5",
"metadata": {},
"source": [
"##### Calculating `\"Comprehensiveness\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9793ef78",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"Comprehensiveness\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9add448a",
"metadata": {},
"outputs": [],
"source": [
"Comprehensiveness = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(Comprehensiveness)"
]
},
{
"cell_type": "markdown",
"id": "bce2fa25",
"metadata": {},
"source": [
"##### Calculating `\"Diversity\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f60a179e",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"Diversity\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ccbd0ab",
"metadata": {},
"outputs": [],
"source": [
"Diversity = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(Diversity)"
]
},
{
"cell_type": "markdown",
"id": "191cab63",
"metadata": {},
"source": [
"##### Calculating`\"Empowerment\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "66bec0bf",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"Empowerment\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b043a8f",
"metadata": {},
"outputs": [],
"source": [
"Empowerment = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(Empowerment)"
]
},
{
"cell_type": "markdown",
"id": "2cac3be9",
"metadata": {},
"source": [
"##### Calculating `\"Directness\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adaa17c0",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"Directness\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a8f97c9",
"metadata": {},
"outputs": [],
"source": [
"Directness = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(Directness)"
]
},
{
"cell_type": "markdown",
"id": "1ad6feb8",
"metadata": {},
"source": [
"##### Calculating `\"F1\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bdc48259",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"F1\"]\n",
"eval_metrics = get_metrics(metric_name_list)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c43c17c8",
"metadata": {},
"outputs": [],
"source": [
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8bfcc46d",
"metadata": {},
"outputs": [],
"source": [
"F1_score = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(F1_score)"
]
},
{
"cell_type": "markdown",
"id": "2583f948",
"metadata": {},
"source": [
"##### Calculating `\"EM\"`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "90a8f630",
"metadata": {},
"outputs": [],
"source": [
"metric_name_list = [\"EM\"]\n",
"eval_metrics = get_metrics(metric_name_list)\n",
"eval_results = await deepeval_answers(instances, answers, eval_metrics[\"deepeval_metrics\"]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d1b1ea1",
"metadata": {},
"outputs": [],
"source": [
"EM = statistics.mean(\n",
" [result.metrics_data[0].score for result in eval_results.test_results]\n",
")\n",
"print(EM)"
]
},
{
"cell_type": "markdown",
"id": "288ab570",
@ -700,7 +963,7 @@
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"display_name": "cognee-c83GrcRT-py3.11",
"language": "python",
"name": "python3"
},
@ -714,7 +977,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
"version": "3.11.10"
}
},
"nbformat": 4,

350
poetry.lock generated
View file

@ -452,13 +452,13 @@ test = ["distro (>=1.9.0,<1.10.0)", "flake8 (>=6.1,<7.0)", "flake8-pyi (>=24.1.0
[[package]]
name = "attrs"
version = "24.3.0"
version = "25.1.0"
description = "Classes Without Boilerplate"
optional = false
python-versions = ">=3.8"
files = [
{file = "attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308"},
{file = "attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff"},
{file = "attrs-25.1.0-py3-none-any.whl", hash = "sha256:c75a69e28a550a7e93789579c22aa26b0f5b83b75dc4e08fe092980051e1090a"},
{file = "attrs-25.1.0.tar.gz", hash = "sha256:1c97078a80c814273a76b2a298a932eb681c87415c11dee0a6921de7f1b02c3e"},
]
[package.extras]
@ -609,17 +609,17 @@ xyzservices = ">=2021.09.1"
[[package]]
name = "boto3"
version = "1.36.2"
version = "1.36.6"
description = "The AWS SDK for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "boto3-1.36.2-py3-none-any.whl", hash = "sha256:76cfc9a705be46e8d22607efacc8d688c064f923d785a01c00b28e9a96425d1a"},
{file = "boto3-1.36.2.tar.gz", hash = "sha256:fde1c29996b77274a60b7bc9f741525afa6267bb1716eb644a764fb7c124a0d2"},
{file = "boto3-1.36.6-py3-none-any.whl", hash = "sha256:6d473f0f340d02b4e9ad5b8e68786a09728101a8b950231b89ebdaf72b6dca21"},
{file = "boto3-1.36.6.tar.gz", hash = "sha256:b36feae061dc0793cf311468956a0a9e99215ce38bc99a1a4e55a5b105f16297"},
]
[package.dependencies]
botocore = ">=1.36.2,<1.37.0"
botocore = ">=1.36.6,<1.37.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.11.0,<0.12.0"
@ -628,13 +628,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.36.2"
version = "1.36.6"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">=3.8"
files = [
{file = "botocore-1.36.2-py3-none-any.whl", hash = "sha256:bc3b7e3b573a48af2bd7116b80fe24f9a335b0b67314dcb2697a327d009abf29"},
{file = "botocore-1.36.2.tar.gz", hash = "sha256:a1fe6610983f0214b0c7655fe6990b6a731746baf305b182976fc7b568fc3cb0"},
{file = "botocore-1.36.6-py3-none-any.whl", hash = "sha256:f77bbbb03fb420e260174650fb5c0cc142ec20a96967734eed2b0ef24334ef34"},
{file = "botocore-1.36.6.tar.gz", hash = "sha256:4864c53d638da191a34daf3ede3ff1371a3719d952cc0c6bd24ce2836a38dd77"},
]
[package.dependencies]
@ -1257,13 +1257,13 @@ optimize = ["orjson"]
[[package]]
name = "deepeval"
version = "2.1.9"
version = "2.2.6"
description = "The Open-Source LLM Evaluation Framework."
optional = true
python-versions = "<3.13,>=3.9"
python-versions = "<3.14,>=3.9"
files = [
{file = "deepeval-2.1.9-py3-none-any.whl", hash = "sha256:c225f8ab6ab910de50026dfd46e2ea38541b3697b189831482a6f02162ead536"},
{file = "deepeval-2.1.9.tar.gz", hash = "sha256:b6c9e90fd0ab639c5b0af5023f2e3fd20ce1906b05d7dc9bfc0bd2f46d0545e0"},
{file = "deepeval-2.2.6-py3-none-any.whl", hash = "sha256:0148a3fc05bff9aa4a21b7c4bd23c7b610957469fe55440f5826b4b7c38797a3"},
{file = "deepeval-2.2.6.tar.gz", hash = "sha256:337b5a8a07dc94e5f72c6db0f5670bc77445edb662a019ccec61f438d150c281"},
]
[package.dependencies]
@ -1308,20 +1308,20 @@ files = [
[[package]]
name = "deprecated"
version = "1.2.15"
version = "1.2.17"
description = "Python @deprecated decorator to deprecate old python classes, functions or methods."
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7"
files = [
{file = "Deprecated-1.2.15-py2.py3-none-any.whl", hash = "sha256:353bc4a8ac4bfc96800ddab349d89c25dec1079f65fd53acdcc1e0b975b21320"},
{file = "deprecated-1.2.15.tar.gz", hash = "sha256:683e561a90de76239796e6b6feac66b99030d2dd3fcf61ef996330f14bbb9b0d"},
{file = "Deprecated-1.2.17-py2.py3-none-any.whl", hash = "sha256:69cdc0a751671183f569495e2efb14baee4344b0236342eec29f1fde25d61818"},
{file = "deprecated-1.2.17.tar.gz", hash = "sha256:0114a10f0bbb750b90b2c2296c90cf7e9eaeb0abb5cf06c80de2c60138de0a82"},
]
[package.dependencies]
wrapt = ">=1.10,<2"
[package.extras]
dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "jinja2 (>=3.0.3,<3.1.0)", "setuptools", "sphinx (<2)", "tox"]
dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "setuptools", "tox"]
[[package]]
name = "deprecation"
@ -1592,13 +1592,13 @@ testing = ["hatch", "pre-commit", "pytest", "tox"]
[[package]]
name = "executing"
version = "2.1.0"
version = "2.2.0"
description = "Get the currently executing AST node of a frame, and other information"
optional = true
python-versions = ">=3.8"
files = [
{file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"},
{file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"},
{file = "executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa"},
{file = "executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755"},
]
[package.extras]
@ -1619,23 +1619,23 @@ redis = ">=5.0.1,<6.0.0"
[[package]]
name = "fastapi"
version = "0.115.6"
version = "0.115.7"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.115.6-py3-none-any.whl", hash = "sha256:e9240b29e36fa8f4bb7290316988e90c381e5092e0cbe84e7818cc3713bcf305"},
{file = "fastapi-0.115.6.tar.gz", hash = "sha256:9ec46f7addc14ea472958a96aae5b5de65f39721a46aaf5705c480d9a8b76654"},
{file = "fastapi-0.115.7-py3-none-any.whl", hash = "sha256:eb6a8c8bf7f26009e8147111ff15b5177a0e19bb4a45bc3486ab14804539d21e"},
{file = "fastapi-0.115.7.tar.gz", hash = "sha256:0f106da6c01d88a6786b3248fb4d7a940d071f6f488488898ad5d354b25ed015"},
]
[package.dependencies]
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.40.0,<0.42.0"
starlette = ">=0.40.0,<0.46.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=2.11.2)", "python-multipart (>=0.0.7)", "uvicorn[standard] (>=0.12.0)"]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=3.1.5)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=3.1.5)", "python-multipart (>=0.0.18)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "fastapi-users"
@ -1694,18 +1694,18 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc
[[package]]
name = "filelock"
version = "3.16.1"
version = "3.17.0"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.8"
python-versions = ">=3.9"
files = [
{file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"},
{file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"},
{file = "filelock-3.17.0-py3-none-any.whl", hash = "sha256:533dc2f7ba78dc2f0f531fc6c4940addf7b70a481e269a5a3b93be94ffbe8338"},
{file = "filelock-3.17.0.tar.gz", hash = "sha256:ee4e77401ef576ebb38cd7f13b9b28893194acc20a8e68e18730ba9c0e54660e"},
]
[package.extras]
docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"]
docs = ["furo (>=2024.8.6)", "sphinx (>=8.1.3)", "sphinx-autodoc-typehints (>=3)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.6.10)", "diff-cover (>=9.2.1)", "pytest (>=8.3.4)", "pytest-asyncio (>=0.25.2)", "pytest-cov (>=6)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.28.1)"]
typing = ["typing-extensions (>=4.12.2)"]
[[package]]
@ -1721,61 +1721,61 @@ files = [
[[package]]
name = "fonttools"
version = "4.55.3"
version = "4.55.6"
description = "Tools to manipulate font files"
optional = false
python-versions = ">=3.8"
files = [
{file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0"},
{file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f"},
{file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841"},
{file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674"},
{file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276"},
{file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5"},
{file = "fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261"},
{file = "fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5"},
{file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e"},
{file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b"},
{file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90"},
{file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0"},
{file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b"},
{file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765"},
{file = "fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f"},
{file = "fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72"},
{file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35"},
{file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c"},
{file = "fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7"},
{file = "fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314"},
{file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427"},
{file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a"},
{file = "fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07"},
{file = "fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54"},
{file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29"},
{file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4"},
{file = "fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca"},
{file = "fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b"},
{file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048"},
{file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe"},
{file = "fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628"},
{file = "fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b"},
{file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:caf8230f3e10f8f5d7593eb6d252a37caf58c480b19a17e250a63dad63834cf3"},
{file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b586ab5b15b6097f2fb71cafa3c98edfd0dba1ad8027229e7b1e204a58b0e09d"},
{file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8c2794ded89399cc2169c4d0bf7941247b8d5932b2659e09834adfbb01589aa"},
{file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf4fe7c124aa3f4e4c1940880156e13f2f4d98170d35c749e6b4f119a872551e"},
{file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:86721fbc389ef5cc1e2f477019e5069e8e4421e8d9576e9c26f840dbb04678de"},
{file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:89bdc5d88bdeec1b15af790810e267e8332d92561dce4f0748c2b95c9bdf3926"},
{file = "fonttools-4.55.3-cp38-cp38-win32.whl", hash = "sha256:bc5dbb4685e51235ef487e4bd501ddfc49be5aede5e40f4cefcccabc6e60fb4b"},
{file = "fonttools-4.55.3-cp38-cp38-win_amd64.whl", hash = "sha256:cd70de1a52a8ee2d1877b6293af8a2484ac82514f10b1c67c1c5762d38073e56"},
{file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bdcc9f04b36c6c20978d3f060e5323a43f6222accc4e7fcbef3f428e216d96af"},
{file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c3ca99e0d460eff46e033cd3992a969658c3169ffcd533e0a39c63a38beb6831"},
{file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22f38464daa6cdb7b6aebd14ab06609328fe1e9705bb0fcc7d1e69de7109ee02"},
{file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed63959d00b61959b035c7d47f9313c2c1ece090ff63afea702fe86de00dbed4"},
{file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5e8d657cd7326eeaba27de2740e847c6b39dde2f8d7cd7cc56f6aad404ddf0bd"},
{file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:fb594b5a99943042c702c550d5494bdd7577f6ef19b0bc73877c948a63184a32"},
{file = "fonttools-4.55.3-cp39-cp39-win32.whl", hash = "sha256:dc5294a3d5c84226e3dbba1b6f61d7ad813a8c0238fceea4e09aa04848c3d851"},
{file = "fonttools-4.55.3-cp39-cp39-win_amd64.whl", hash = "sha256:aedbeb1db64496d098e6be92b2e63b5fac4e53b1b92032dfc6988e1ea9134a4d"},
{file = "fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977"},
{file = "fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45"},
{file = "fonttools-4.55.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:57d55fc965e5dd20c8a60d880e0f43bafb506be87af0b650bdc42591e41e0d0d"},
{file = "fonttools-4.55.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:127999618afe3a2490fad54bab0650c5fbeab1f8109bdc0205f6ad34306deb8b"},
{file = "fonttools-4.55.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3226d40cb92787e09dcc3730f54b3779dfe56bdfea624e263685ba17a6faac4"},
{file = "fonttools-4.55.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e82772f70b84e17aa36e9f236feb2a4f73cb686ec1e162557a36cf759d1acd58"},
{file = "fonttools-4.55.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a632f85bd73e002b771bcbcdc512038fa5d2e09bb18c03a22fb8d400ea492ddf"},
{file = "fonttools-4.55.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:791e0cf862cdd3a252df395f1bb5f65e3a760f1da3c7ce184d0f7998c266614d"},
{file = "fonttools-4.55.6-cp310-cp310-win32.whl", hash = "sha256:94f7f2c5c5f3a6422e954ecb6d37cc363e27d6f94050a7ed3f79f12157af6bb2"},
{file = "fonttools-4.55.6-cp310-cp310-win_amd64.whl", hash = "sha256:2d15e02b93a46982a8513a208e8f89148bca8297640527365625be56151687d0"},
{file = "fonttools-4.55.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0879f99eabbf2171dfadd9c8c75cec2b7b3aa9cd1f3955dd799c69d60a5189ef"},
{file = "fonttools-4.55.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d77d83ca77a4c3156a2f4cbc7f09f5a8503795da658fa255b987ad433a191266"},
{file = "fonttools-4.55.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07478132407736ee5e54f9f534e73923ae28e9bb6dba17764a35e3caf7d7fea3"},
{file = "fonttools-4.55.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1c06fbc2fd76b9bab03eddfd8aa9fb7c0981d314d780e763c80aa76be1c9982"},
{file = "fonttools-4.55.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:09ed667c4753e1270994e5398cce8703e6423c41702a55b08f843b2907b1be65"},
{file = "fonttools-4.55.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0ee6ed68af8d57764d69da099db163aaf37d62ba246cfd42f27590e3e6724b55"},
{file = "fonttools-4.55.6-cp311-cp311-win32.whl", hash = "sha256:9f99e7876518b2d059a9cc67c506168aebf9c71ac8d81006d75e684222f291d2"},
{file = "fonttools-4.55.6-cp311-cp311-win_amd64.whl", hash = "sha256:3aa6c684007723895aade9b2fe76d07008c9dc90fd1ef6c310b3ca9c8566729f"},
{file = "fonttools-4.55.6-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:51120695ee13001533e50abd40eec32c01b9c6f44c5567db38a7acd3eedcd19d"},
{file = "fonttools-4.55.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:76ac5a595f86892b49ba86ba2e46185adc76328ce6eff0583b30e5c3ab02a914"},
{file = "fonttools-4.55.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b7535a5ac386e549e2b00b34c59b53f805e2423000676723b6867df3c10df04"},
{file = "fonttools-4.55.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c42009177d3690894288082d5e3dac6bdc9f5d38e25054535e341a19cf5183a4"},
{file = "fonttools-4.55.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:88f74bc19dbab3dee6a00ca67ca54bb4793e44ff0c4dcf1fa61d68651ae3fa0a"},
{file = "fonttools-4.55.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bc6f58976ffc19fe1630119a2736153b66151d023c6f30065f31c9e8baed1303"},
{file = "fonttools-4.55.6-cp312-cp312-win32.whl", hash = "sha256:4259159715142c10b0f4d121ef14da3fa6eafc719289d9efa4b20c15e57fef82"},
{file = "fonttools-4.55.6-cp312-cp312-win_amd64.whl", hash = "sha256:d91fce2e9a87cc0db9f8042281b6458f99854df810cfefab2baf6ab2acc0f4b4"},
{file = "fonttools-4.55.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:9394813cc73fa22c5413ec1c5745c0a16f68dd2b890f7c55eaba5cb40187ed55"},
{file = "fonttools-4.55.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ac817559a7d245454231374e194b4e457dca6fefa5b52af466ab0516e9a09c6e"},
{file = "fonttools-4.55.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34405f1314f1e88b1877a9f9e497fe45190e8c4b29a6c7cd85ed7f666a57d702"},
{file = "fonttools-4.55.6-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af5469bbf555047efd8752d85faeb2a3510916ddc6c50dd6fb168edf1677408f"},
{file = "fonttools-4.55.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8a8004a19195eb8a8a13de69e26ec9ed60a5bc1fde336d0021b47995b368fac9"},
{file = "fonttools-4.55.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:73a4aaf672e7b2265c6354a69cbbadf71b7f3133ecb74e98fec4c67c366698a3"},
{file = "fonttools-4.55.6-cp313-cp313-win32.whl", hash = "sha256:73bdff9c44d36c57ea84766afc20517eda0c9bb1571b4a09876646264bd5ff3b"},
{file = "fonttools-4.55.6-cp313-cp313-win_amd64.whl", hash = "sha256:132fa22be8a99784de8cb171b30425a581f04a40ec1c05183777fb2b1fe3bac9"},
{file = "fonttools-4.55.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8398928acb8a57073606feb9a310682d4a7e2d7536f2c61719261f4c0974504c"},
{file = "fonttools-4.55.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c2f78ebfdef578d4db7c44bc207ac5f9a5c1f22c9db606460dcc8ad48e183338"},
{file = "fonttools-4.55.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb545f3a4ebada908fa717ec732277de18dd10161f03ee3b3144d34477804de"},
{file = "fonttools-4.55.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1062daa0390b32bfd062ded2b450db9e9cf10e5a9919561c13f535e818b1952b"},
{file = "fonttools-4.55.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:860ab9ed3f9e088d3bdb77b9074e656635f173b039e77d550b603cba052a0dca"},
{file = "fonttools-4.55.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:03701e7de70c71eb5965cb200986b0c11dfa3cf8e843e4f517ee30a0f43f0a25"},
{file = "fonttools-4.55.6-cp38-cp38-win32.whl", hash = "sha256:f66561fbfb75785d06513b8025a50be37bf970c3c413e87581cc6eff10bc78f1"},
{file = "fonttools-4.55.6-cp38-cp38-win_amd64.whl", hash = "sha256:edf159a8f1e48dc4683a715b36da76dd2f82954b16bfe11a215d58e963d31cfc"},
{file = "fonttools-4.55.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:61aa1997c520bee4cde14ffabe81efc4708c500c8c81dce37831551627a2be56"},
{file = "fonttools-4.55.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7954ea66a8d835f279c17d8474597a001ddd65a2c1ca97e223041bfbbe11f65e"},
{file = "fonttools-4.55.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f4e88f15f5ed4d2e4bdfcc98540bb3987ae25904f9be304be9a604e7a7050a1"},
{file = "fonttools-4.55.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d419483a6295e83cabddb56f1c7b7bfdc8169de2fcb5c68d622bd11140355f9"},
{file = "fonttools-4.55.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:acc74884afddc2656bffc50100945ff407574538c152931c402fccddc46f0abc"},
{file = "fonttools-4.55.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a55489c7e9d5ea69690a2afad06723c3d0c48c6d276a25391ea97cb31a16b37c"},
{file = "fonttools-4.55.6-cp39-cp39-win32.whl", hash = "sha256:8c9de8d16d02ecc8b65e3f3d2d1e3002be2c4a3f094d580faf76d7f768bd45fe"},
{file = "fonttools-4.55.6-cp39-cp39-win_amd64.whl", hash = "sha256:471961af7a4b8461fac0c8ee044b4986e6fe3746d4c83a1aacbdd85b4eb53f93"},
{file = "fonttools-4.55.6-py3-none-any.whl", hash = "sha256:d20ab5a78d0536c26628eaadba661e7ae2427b1e5c748a0a510a44d914e1b155"},
{file = "fonttools-4.55.6.tar.gz", hash = "sha256:1beb4647a0df5ceaea48015656525eb8081af226fe96554089fd3b274d239ef0"},
]
[package.extras]
@ -2540,13 +2540,13 @@ test = ["eth_utils (>=2.0.0)", "hypothesis (>=3.44.24,<=6.31.6)", "pytest (>=7.0
[[package]]
name = "hpack"
version = "4.0.0"
description = "Pure-Python HPACK header compression"
version = "4.1.0"
description = "Pure-Python HPACK header encoding"
optional = true
python-versions = ">=3.6.1"
python-versions = ">=3.9"
files = [
{file = "hpack-4.0.0-py3-none-any.whl", hash = "sha256:84a076fad3dc9a9f8063ccb8041ef100867b1878b25ef0ee63847a5d53818a6c"},
{file = "hpack-4.0.0.tar.gz", hash = "sha256:fc41de0c63e687ebffde81187a948221294896f6bdc0ae2312708df339430095"},
{file = "hpack-4.1.0-py3-none-any.whl", hash = "sha256:157ac792668d995c657d93111f46b4535ed114f0c9c8d672271bbec7eae1b496"},
{file = "hpack-4.1.0.tar.gz", hash = "sha256:ec5eca154f7056aa06f196a557655c5b009b382873ac8d1e66e79e87535f1dca"},
]
[[package]]
@ -2701,24 +2701,24 @@ tests = ["freezegun", "pytest", "pytest-cov"]
[[package]]
name = "hyperframe"
version = "6.0.1"
description = "HTTP/2 framing layer for Python"
version = "6.1.0"
description = "Pure-Python HTTP/2 framing"
optional = true
python-versions = ">=3.6.1"
python-versions = ">=3.9"
files = [
{file = "hyperframe-6.0.1-py3-none-any.whl", hash = "sha256:0ec6bafd80d8ad2195c4f03aacba3a8265e57bc4cff261e802bf39970ed02a15"},
{file = "hyperframe-6.0.1.tar.gz", hash = "sha256:ae510046231dc8e9ecb1a6586f63d2347bf4c8905914aa84ba585ae85f28a914"},
{file = "hyperframe-6.1.0-py3-none-any.whl", hash = "sha256:b03380493a519fce58ea5af42e4a42317bf9bd425596f7a0835ffce80f1a42e5"},
{file = "hyperframe-6.1.0.tar.gz", hash = "sha256:f630908a00854a7adeabd6382b43923a4c4cd4b821fcb527e6ab9e15382a3b08"},
]
[[package]]
name = "identify"
version = "2.6.5"
version = "2.6.6"
description = "File identification library for Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "identify-2.6.5-py2.py3-none-any.whl", hash = "sha256:14181a47091eb75b337af4c23078c9d09225cd4c48929f521f3bf16b09d02566"},
{file = "identify-2.6.5.tar.gz", hash = "sha256:c10b33f250e5bba374fae86fb57f3adcebf1161bce7cdf92031915fd480c13bc"},
{file = "identify-2.6.6-py2.py3-none-any.whl", hash = "sha256:cbd1810bce79f8b671ecb20f53ee0ae8e86ae84b557de31d89709dc2a48ba881"},
{file = "identify-2.6.6.tar.gz", hash = "sha256:7bec12768ed44ea4761efb47806f0a41f86e7c0a5fdf5950d4648c90eca7e251"},
]
[package.extras]
@ -3549,18 +3549,18 @@ tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<10"
[[package]]
name = "langchain-core"
version = "0.3.30"
version = "0.3.31"
description = "Building applications with LLMs through composability"
optional = true
python-versions = "<4.0,>=3.9"
files = [
{file = "langchain_core-0.3.30-py3-none-any.whl", hash = "sha256:0a4c4e02fac5968b67fbb0142c00c2b976c97e45fce62c7ac9eb1636a6926493"},
{file = "langchain_core-0.3.30.tar.gz", hash = "sha256:0f1281b4416977df43baf366633ad18e96c5dcaaeae6fcb8a799f9889c853243"},
{file = "langchain_core-0.3.31-py3-none-any.whl", hash = "sha256:882e64ad95887c951dce8e835889e43263b11848c394af3b73e06912624bd743"},
{file = "langchain_core-0.3.31.tar.gz", hash = "sha256:5ffa56354c07de9efaa4139609659c63e7d9b29da2c825f6bab9392ec98300df"},
]
[package.dependencies]
jsonpatch = ">=1.33,<2.0"
langsmith = ">=0.1.125,<0.3"
langsmith = ">=0.1.125,<0.4"
packaging = ">=23.2,<25"
pydantic = [
{version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""},
@ -3572,17 +3572,17 @@ typing-extensions = ">=4.7"
[[package]]
name = "langchain-openai"
version = "0.3.1"
version = "0.3.2"
description = "An integration package connecting OpenAI and LangChain"
optional = true
python-versions = "<4.0,>=3.9"
files = [
{file = "langchain_openai-0.3.1-py3-none-any.whl", hash = "sha256:5cf2a1e115b12570158d89c22832fa381803c3e1e11d1eb781195c8d9e454bd5"},
{file = "langchain_openai-0.3.1.tar.gz", hash = "sha256:cce314f1437b2cad73e0ed2b55e74dc399bc1bbc43594c4448912fb51c5e4447"},
{file = "langchain_openai-0.3.2-py3-none-any.whl", hash = "sha256:8674183805e26d3ae3f78cc44f79fe0b2066f61e2de0e7e18be3b86f0d3b2759"},
{file = "langchain_openai-0.3.2.tar.gz", hash = "sha256:c2c80ac0208eb7cefdef96f6353b00fa217979ffe83f0a21cc8666001df828c1"},
]
[package.dependencies]
langchain-core = ">=0.3.30,<0.4.0"
langchain-core = ">=0.3.31,<0.4.0"
openai = ">=1.58.1,<2.0.0"
tiktoken = ">=0.7,<1"
@ -3616,13 +3616,13 @@ six = "*"
[[package]]
name = "langfuse"
version = "2.57.11"
version = "2.57.12"
description = "A client library for accessing langfuse"
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "langfuse-2.57.11-py3-none-any.whl", hash = "sha256:c9a074c68de62b7a7b144c02577a1a124df84274f13c80488f077147e93d6e78"},
{file = "langfuse-2.57.11.tar.gz", hash = "sha256:f1c220decdd9c858fb58916af1775ac999836859553c6ffef33ebf2197030697"},
{file = "langfuse-2.57.12-py3-none-any.whl", hash = "sha256:11f7b0a002ef08c1de129384c866a389aa7997d6620c5a7282678ea769b93857"},
{file = "langfuse-2.57.12.tar.gz", hash = "sha256:e74e7c7ef790475d222a9ee6e5163524495a899817db18736df2ab14bc72615f"},
]
[package.dependencies]
@ -3694,13 +3694,13 @@ proxy = ["PyJWT (>=2.8.0,<3.0.0)", "apscheduler (>=3.10.4,<4.0.0)", "backoff", "
[[package]]
name = "llama-index-core"
version = "0.12.12"
version = "0.12.14"
description = "Interface between LLMs and your data"
optional = true
python-versions = "<4.0,>=3.9"
files = [
{file = "llama_index_core-0.12.12-py3-none-any.whl", hash = "sha256:cea491e87f65e6b775b5aef95720de302b85af1bdc67d779c4b09170a30e5b98"},
{file = "llama_index_core-0.12.12.tar.gz", hash = "sha256:068b755bbc681731336e822f5977d7608585e8f759c6293ebd812e2659316a37"},
{file = "llama_index_core-0.12.14-py3-none-any.whl", hash = "sha256:6fdb30e3fadf98e7df75f9db5d06f6a7f8503ca545a71e048d786ff88012bd50"},
{file = "llama_index_core-0.12.14.tar.gz", hash = "sha256:378bbf5bf4d1a8c692d3a980c1a6ed3be7a9afb676a4960429dea15f62d06cd3"},
]
[package.dependencies]
@ -4022,13 +4022,13 @@ files = [
[[package]]
name = "marshmallow"
version = "3.25.1"
version = "3.26.0"
description = "A lightweight library for converting complex datatypes to and from native Python datatypes."
optional = true
python-versions = ">=3.9"
files = [
{file = "marshmallow-3.25.1-py3-none-any.whl", hash = "sha256:ec5d00d873ce473b7f2ffcb7104286a376c354cab0c2fa12f5573dab03e87210"},
{file = "marshmallow-3.25.1.tar.gz", hash = "sha256:f4debda3bb11153d81ac34b0d582bf23053055ee11e791b54b4b35493468040a"},
{file = "marshmallow-3.26.0-py3-none-any.whl", hash = "sha256:1287bca04e6a5f4094822ac153c03da5e214a0a60bcd557b140f3e66991b8ca1"},
{file = "marshmallow-3.26.0.tar.gz", hash = "sha256:eb36762a1cc76d7abf831e18a3a1b26d3d481bbc74581b8e532a3d3a8115e1cb"},
]
[package.dependencies]
@ -5531,13 +5531,13 @@ tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "p
[[package]]
name = "posthog"
version = "3.8.4"
version = "3.10.0"
description = "Integrate PostHog into any python application."
optional = true
python-versions = "*"
files = [
{file = "posthog-3.8.4-py2.py3-none-any.whl", hash = "sha256:a6f781310fda9c18a36e697400b7f8be8bd46e998f152560273e62b88d1c9f73"},
{file = "posthog-3.8.4.tar.gz", hash = "sha256:ba8cd14bca58686a199b1ba5655d3bad67c09a3a381062347eb30908282df1da"},
{file = "posthog-3.10.0-py2.py3-none-any.whl", hash = "sha256:8481949321ba84059bfc8778d358ffec008c64efe834ac7c8eae80243fafa090"},
{file = "posthog-3.10.0.tar.gz", hash = "sha256:c07113c0558fde279d0462010e4ad87b6a2a76cb970cae0122d5a31d629fc27b"},
]
[package.dependencies]
@ -5551,7 +5551,7 @@ six = ">=1.5"
dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"]
langchain = ["langchain (>=0.2.0)"]
sentry = ["django", "sentry-sdk"]
test = ["anthropic", "coverage", "django", "flake8", "freezegun (==0.3.15)", "langchain-anthropic (>=0.2.0)", "langchain-community (>=0.2.0)", "langchain-openai (>=0.2.0)", "mock (>=2.0.0)", "openai", "pylint", "pytest", "pytest-asyncio", "pytest-timeout"]
test = ["anthropic", "coverage", "django", "flake8", "freezegun (==0.3.15)", "langchain-anthropic (>=0.2.0)", "langchain-community (>=0.2.0)", "langchain-openai (>=0.2.0)", "langgraph", "mock (>=2.0.0)", "openai", "pylint", "pytest", "pytest-asyncio", "pytest-timeout"]
[[package]]
name = "pre-commit"
@ -6154,13 +6154,13 @@ testutils = ["gitpython (>3)"]
[[package]]
name = "pymdown-extensions"
version = "10.14"
version = "10.14.1"
description = "Extension pack for Python Markdown."
optional = false
python-versions = ">=3.8"
files = [
{file = "pymdown_extensions-10.14-py3-none-any.whl", hash = "sha256:202481f716cc8250e4be8fce997781ebf7917701b59652458ee47f2401f818b5"},
{file = "pymdown_extensions-10.14.tar.gz", hash = "sha256:741bd7c4ff961ba40b7528d32284c53bc436b8b1645e8e37c3e57770b8700a34"},
{file = "pymdown_extensions-10.14.1-py3-none-any.whl", hash = "sha256:637951cbfbe9874ba28134fb3ce4b8bcadd6aca89ac4998ec29dcbafd554ae08"},
{file = "pymdown_extensions-10.14.1.tar.gz", hash = "sha256:b65801996a0cd4f42a3110810c306c45b7313c09b0610a6f773730f2a9e3c96b"},
]
[package.dependencies]
@ -6172,13 +6172,13 @@ extra = ["pygments (>=2.19.1)"]
[[package]]
name = "pymilvus"
version = "2.5.3"
version = "2.5.4"
description = "Python Sdk for Milvus"
optional = true
python-versions = ">=3.8"
files = [
{file = "pymilvus-2.5.3-py3-none-any.whl", hash = "sha256:64ca63594284586937274800be27a402f3be2d078130bf81d94ab8d7798ac9c8"},
{file = "pymilvus-2.5.3.tar.gz", hash = "sha256:68bc3797b7a14c494caf116cee888894ffd6eba7b96a3ac841be85d60694cc5d"},
{file = "pymilvus-2.5.4-py3-none-any.whl", hash = "sha256:3f7ddaeae0c8f63554b8e316b73f265d022e05a457d47c366ce47293434a3aea"},
{file = "pymilvus-2.5.4.tar.gz", hash = "sha256:611732428ff669d57ded3d1f823bdeb10febf233d0251cce8498b287e5a10ce8"},
]
[package.dependencies]
@ -6693,13 +6693,13 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "qdrant-client"
version = "1.13.0"
version = "1.13.2"
description = "Client library for the Qdrant vector search engine"
optional = true
python-versions = ">=3.9"
files = [
{file = "qdrant_client-1.13.0-py3-none-any.whl", hash = "sha256:63a063d5232618b609f2c438caf6f3afd3bd110dd80d01be20c596e516efab6b"},
{file = "qdrant_client-1.13.0.tar.gz", hash = "sha256:9708e3194081619b38194c99e7c369064e3f3f328d8a8ef1d71a87425a5ddf0c"},
{file = "qdrant_client-1.13.2-py3-none-any.whl", hash = "sha256:db97e759bd3f8d483a383984ba4c2a158eef56f2188d83df7771591d43de2201"},
{file = "qdrant_client-1.13.2.tar.gz", hash = "sha256:c8cce87ce67b006f49430a050a35c85b78e3b896c0c756dafc13bdeca543ec13"},
]
[package.dependencies]
@ -6838,13 +6838,13 @@ ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==23.2.1)", "requests (>=2.31.0)"
[[package]]
name = "referencing"
version = "0.36.1"
version = "0.36.2"
description = "JSON Referencing + Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "referencing-0.36.1-py3-none-any.whl", hash = "sha256:363d9c65f080d0d70bc41c721dce3c7f3e77fc09f269cd5c8813da18069a6794"},
{file = "referencing-0.36.1.tar.gz", hash = "sha256:ca2e6492769e3602957e9b831b94211599d2aade9477f5d44110d2530cf9aade"},
{file = "referencing-0.36.2-py3-none-any.whl", hash = "sha256:e8699adbbf8b5c7de96d8ffa0eb5c158b3beafce084968e2ea8bb08c6794dcd0"},
{file = "referencing-0.36.2.tar.gz", hash = "sha256:df2e89862cd09deabbdba16944cc3f10feb6b3e6f18e902f7cc25609a34775aa"},
]
[package.dependencies]
@ -7195,40 +7195,40 @@ pyasn1 = ">=0.1.3"
[[package]]
name = "ruff"
version = "0.9.2"
version = "0.9.3"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.9.2-py3-none-linux_armv6l.whl", hash = "sha256:80605a039ba1454d002b32139e4970becf84b5fee3a3c3bf1c2af6f61a784347"},
{file = "ruff-0.9.2-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b9aab82bb20afd5f596527045c01e6ae25a718ff1784cb92947bff1f83068b00"},
{file = "ruff-0.9.2-py3-none-macosx_11_0_arm64.whl", hash = "sha256:fbd337bac1cfa96be615f6efcd4bc4d077edbc127ef30e2b8ba2a27e18c054d4"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82b35259b0cbf8daa22a498018e300b9bb0174c2bbb7bcba593935158a78054d"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8b6a9701d1e371bf41dca22015c3f89769da7576884d2add7317ec1ec8cb9c3c"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9cc53e68b3c5ae41e8faf83a3b89f4a5d7b2cb666dff4b366bb86ed2a85b481f"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:8efd9da7a1ee314b910da155ca7e8953094a7c10d0c0a39bfde3fcfd2a015684"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3292c5a22ea9a5f9a185e2d131dc7f98f8534a32fb6d2ee7b9944569239c648d"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a605fdcf6e8b2d39f9436d343d1f0ff70c365a1e681546de0104bef81ce88df"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c547f7f256aa366834829a08375c297fa63386cbe5f1459efaf174086b564247"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:d18bba3d3353ed916e882521bc3e0af403949dbada344c20c16ea78f47af965e"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:b338edc4610142355ccf6b87bd356729b62bf1bc152a2fad5b0c7dc04af77bfe"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_i686.whl", hash = "sha256:492a5e44ad9b22a0ea98cf72e40305cbdaf27fac0d927f8bc9e1df316dcc96eb"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:af1e9e9fe7b1f767264d26b1075ac4ad831c7db976911fa362d09b2d0356426a"},
{file = "ruff-0.9.2-py3-none-win32.whl", hash = "sha256:71cbe22e178c5da20e1514e1e01029c73dc09288a8028a5d3446e6bba87a5145"},
{file = "ruff-0.9.2-py3-none-win_amd64.whl", hash = "sha256:c5e1d6abc798419cf46eed03f54f2e0c3adb1ad4b801119dedf23fcaf69b55b5"},
{file = "ruff-0.9.2-py3-none-win_arm64.whl", hash = "sha256:a1b63fa24149918f8b37cef2ee6fff81f24f0d74b6f0bdc37bc3e1f2143e41c6"},
{file = "ruff-0.9.2.tar.gz", hash = "sha256:b5eceb334d55fae5f316f783437392642ae18e16dcf4f1858d55d3c2a0f8f5d0"},
{file = "ruff-0.9.3-py3-none-linux_armv6l.whl", hash = "sha256:7f39b879064c7d9670197d91124a75d118d00b0990586549949aae80cdc16624"},
{file = "ruff-0.9.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:a187171e7c09efa4b4cc30ee5d0d55a8d6c5311b3e1b74ac5cb96cc89bafc43c"},
{file = "ruff-0.9.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c59ab92f8e92d6725b7ded9d4a31be3ef42688a115c6d3da9457a5bda140e2b4"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2dc153c25e715be41bb228bc651c1e9b1a88d5c6e5ed0194fa0dfea02b026439"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:646909a1e25e0dc28fbc529eab8eb7bb583079628e8cbe738192853dbbe43af5"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a5a46e09355695fbdbb30ed9889d6cf1c61b77b700a9fafc21b41f097bfbba4"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:c4bb09d2bbb394e3730d0918c00276e79b2de70ec2a5231cd4ebb51a57df9ba1"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96a87ec31dc1044d8c2da2ebbed1c456d9b561e7d087734336518181b26b3aa5"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bb7554aca6f842645022fe2d301c264e6925baa708b392867b7a62645304df4"},
{file = "ruff-0.9.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cabc332b7075a914ecea912cd1f3d4370489c8018f2c945a30bcc934e3bc06a6"},
{file = "ruff-0.9.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:33866c3cc2a575cbd546f2cd02bdd466fed65118e4365ee538a3deffd6fcb730"},
{file = "ruff-0.9.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:006e5de2621304c8810bcd2ee101587712fa93b4f955ed0985907a36c427e0c2"},
{file = "ruff-0.9.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:ba6eea4459dbd6b1be4e6bfc766079fb9b8dd2e5a35aff6baee4d9b1514ea519"},
{file = "ruff-0.9.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:90230a6b8055ad47d3325e9ee8f8a9ae7e273078a66401ac66df68943ced029b"},
{file = "ruff-0.9.3-py3-none-win32.whl", hash = "sha256:eabe5eb2c19a42f4808c03b82bd313fc84d4e395133fb3fc1b1516170a31213c"},
{file = "ruff-0.9.3-py3-none-win_amd64.whl", hash = "sha256:040ceb7f20791dfa0e78b4230ee9dce23da3b64dd5848e40e3bf3ab76468dcf4"},
{file = "ruff-0.9.3-py3-none-win_arm64.whl", hash = "sha256:800d773f6d4d33b0a3c60e2c6ae8f4c202ea2de056365acfa519aa48acf28e0b"},
{file = "ruff-0.9.3.tar.gz", hash = "sha256:8293f89985a090ebc3ed1064df31f3b4b56320cdfcec8b60d3295bddb955c22a"},
]
[[package]]
name = "s3transfer"
version = "0.11.1"
version = "0.11.2"
description = "An Amazon S3 Transfer Manager"
optional = false
python-versions = ">=3.8"
files = [
{file = "s3transfer-0.11.1-py3-none-any.whl", hash = "sha256:8fa0aa48177be1f3425176dfe1ab85dcd3d962df603c3dbfc585e6bf857ef0ff"},
{file = "s3transfer-0.11.1.tar.gz", hash = "sha256:3f25c900a367c8b7f7d8f9c34edc87e300bde424f779dc9f0a8ae4f9df9264f6"},
{file = "s3transfer-0.11.2-py3-none-any.whl", hash = "sha256:be6ecb39fadd986ef1701097771f87e4d2f821f27f6071c872143884d2950fbc"},
{file = "s3transfer-0.11.2.tar.gz", hash = "sha256:3b39185cb72f5acc77db1a58b6e25b977f28d20496b6e58d6813d75f464d632f"},
]
[package.dependencies]
@ -7387,13 +7387,13 @@ test = ["Cython", "array-api-strict (>=2.0,<2.1.1)", "asv", "gmpy2", "hypothesis
[[package]]
name = "semver"
version = "3.0.2"
version = "3.0.4"
description = "Python helper for Semantic Versioning (https://semver.org)"
optional = false
python-versions = ">=3.7"
files = [
{file = "semver-3.0.2-py3-none-any.whl", hash = "sha256:b1ea4686fe70b981f85359eda33199d60c53964284e0cfb4977d243e37cf4bf4"},
{file = "semver-3.0.2.tar.gz", hash = "sha256:6253adb39c70f6e51afed2fa7152bcd414c411286088fb4b9effb133885ab4cc"},
{file = "semver-3.0.4-py3-none-any.whl", hash = "sha256:9c824d87ba7f7ab4a1890799cec8596f15c1241cb473404ea1cb0c55e4b04746"},
{file = "semver-3.0.4.tar.gz", hash = "sha256:afc7d8c584a5ed0a11033af086e8af226a9c0b206f313e0301f8dd7b6b589602"},
]
[[package]]
@ -7789,20 +7789,20 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"]
[[package]]
name = "starlette"
version = "0.41.3"
version = "0.45.3"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.8"
python-versions = ">=3.9"
files = [
{file = "starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7"},
{file = "starlette-0.41.3.tar.gz", hash = "sha256:0e4ab3d16522a255be6b28260b938eae2482f98ce5cc934cb08dce8dc3ba5835"},
{file = "starlette-0.45.3-py3-none-any.whl", hash = "sha256:dfb6d332576f136ec740296c7e8bb8c8a7125044e7c6da30744718880cdd059d"},
{file = "starlette-0.45.3.tar.gz", hash = "sha256:2cbcba2a75806f8a41c722141486f37c28e30a0921c5f6fe4346cb0dcee1302f"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
anyio = ">=3.6.2,<5"
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart (>=0.0.7)", "pyyaml"]
full = ["httpx (>=0.27.0,<0.29.0)", "itsdangerous", "jinja2", "python-multipart (>=0.0.18)", "pyyaml"]
[[package]]
name = "tabulate"
@ -8234,13 +8234,13 @@ typing-extensions = ">=3.7.4"
[[package]]
name = "tzdata"
version = "2024.2"
version = "2025.1"
description = "Provider of IANA time zone data"
optional = false
python-versions = ">=2"
files = [
{file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"},
{file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"},
{file = "tzdata-2025.1-py2.py3-none-any.whl", hash = "sha256:7e127113816800496f027041c570f50bcd464a020098a3b6b199517772303639"},
{file = "tzdata-2025.1.tar.gz", hash = "sha256:24894909e88cdb28bd1636c6887801df64cb485bd593f2fd83ef29075a81d694"},
]
[[package]]
@ -8332,13 +8332,13 @@ files = [
[[package]]
name = "unstructured"
version = "0.16.14"
version = "0.16.15"
description = "A library that prepares raw documents for downstream ML tasks."
optional = true
python-versions = "<3.13,>=3.9.0"
files = [
{file = "unstructured-0.16.14-py3-none-any.whl", hash = "sha256:7b3c2eb21e65d2f61240de7a5241fd7734d97be2c9cfa5f70934e10470318131"},
{file = "unstructured-0.16.14.tar.gz", hash = "sha256:cec819461090226cd478429c1e0fda19a66ba49ab9ade1ea1fd9ec79c279d7ac"},
{file = "unstructured-0.16.15-py3-none-any.whl", hash = "sha256:5b0931eb92fb858b983fada18111efdf9c2a0c861ef8e9b58c4e05b1daa50e35"},
{file = "unstructured-0.16.15.tar.gz", hash = "sha256:18fb850d47b5a2a6ea45b2f7e0eda687f903a2f2e58909b1defd48e2b3126ff4"},
]
[package.dependencies]
@ -8374,19 +8374,19 @@ wrapt = "*"
xlrd = {version = "*", optional = true, markers = "extra == \"xlsx\""}
[package.extras]
all-docs = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (==0.8.1)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
all-docs = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
csv = ["pandas"]
doc = ["python-docx (>=1.1.2)"]
docx = ["python-docx (>=1.1.2)"]
epub = ["pypandoc"]
huggingface = ["langdetect", "sacremoses", "sentencepiece", "torch", "transformers"]
image = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (==0.8.1)", "unstructured.pytesseract (>=0.3.12)"]
local-inference = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (==0.8.1)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
image = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)"]
local-inference = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)", "xlrd"]
md = ["markdown"]
odt = ["pypandoc", "python-docx (>=1.1.2)"]
org = ["pypandoc"]
paddleocr = ["paddlepaddle (==3.0.0b1)", "unstructured.paddleocr (==2.8.1.0)"]
pdf = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (==0.8.1)", "unstructured.pytesseract (>=0.3.12)"]
pdf = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (>=0.8.6)", "unstructured.pytesseract (>=0.3.12)"]
ppt = ["python-pptx (>=1.0.1)"]
pptx = ["python-pptx (>=1.0.1)"]
rst = ["pypandoc"]
@ -8765,13 +8765,13 @@ test = ["pytest", "pytest-cov"]
[[package]]
name = "xlsxwriter"
version = "3.2.0"
version = "3.2.1"
description = "A Python module for creating Excel XLSX files."
optional = true
python-versions = ">=3.6"
files = [
{file = "XlsxWriter-3.2.0-py3-none-any.whl", hash = "sha256:ecfd5405b3e0e228219bcaf24c2ca0915e012ca9464a14048021d21a995d490e"},
{file = "XlsxWriter-3.2.0.tar.gz", hash = "sha256:9977d0c661a72866a61f9f7a809e25ebbb0fb7036baa3b9fe74afcfca6b3cb8c"},
{file = "XlsxWriter-3.2.1-py3-none-any.whl", hash = "sha256:7e8f7c60b7a1660ef791d46ab5de78469cb978b991ca841af61f5832d2f9f4fe"},
{file = "XlsxWriter-3.2.1.tar.gz", hash = "sha256:97618759cb264fb6a93397f660cca156ffa9561743b1823dafb60dc4474e1902"},
]
[[package]]
@ -9053,4 +9053,4 @@ weaviate = ["weaviate-client"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10.0,<3.13"
content-hash = "ddc6f5406ee0205107a278cf46918b082d12dbc51471ff6464011731cfd41890"
content-hash = "480675c274cd85a76a95bf03af865b1a0b462f25bbc21d7427b0a0b8e21c13db"

View file

@ -22,7 +22,7 @@ python = ">=3.10.0,<3.13"
openai = "1.59.4"
pydantic = "2.10.5"
python-dotenv = "1.0.1"
fastapi = ">=0.109.2,<0.116.0"
fastapi = "0.115.7"
uvicorn = "0.34.0"
requests = "2.32.3"
aiohttp = "3.10.10"