Add mcp to cognee

This commit is contained in:
vasilije 2024-12-14 12:14:04 +01:00
parent fb1c223982
commit 3dc2d1e647
4 changed files with 237 additions and 0 deletions

View file

@ -0,0 +1,14 @@
import asyncio
from . import server
def main():
"""Main entry point for the package."""
asyncio.run(server.main())
# Optionally expose other important items at package level
__all__ = ['main', 'server']
if __name__ == "__main__":
main()

View file

@ -0,0 +1,3 @@
from mcpcognee import main
main()

View file

@ -0,0 +1,126 @@
import importlib.util
import os
from contextlib import redirect_stderr, redirect_stdout
import cognee
import mcp.server.stdio
import mcp.types as types
from cognee.api.v1.search import SearchType
from cognee.shared.data_models import KnowledgeGraph
from mcp.server import NotificationOptions, Server
from mcp.server.models import InitializationOptions
from pydantic import AnyUrl, BaseModel
server = Server("mcpcognee")
def node_to_string(node):
keys_to_keep = ["chunk_index", "topological_rank", "cut_type", "id", "text"]
keyset = set(keys_to_keep) & node.keys()
return "Node(" + " ".join([key + ": " + str(node[key]) + "," for key in keyset]) + ")"
def retrieved_edges_to_string(search_results):
edge_strings = []
for triplet in search_results:
node1, edge, node2 = triplet
relationship_type = edge["relationship_name"]
edge_str = f"{node_to_string(node1)} {relationship_type} {node_to_string(node2)}"
edge_strings.append(edge_str)
return "\n".join(edge_strings)
def load_class(model_file, model_name):
model_file = os.path.abspath(model_file)
spec = importlib.util.spec_from_file_location("graph_model", model_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
model_class = getattr(module, model_name)
return model_class
@server.list_tools()
async def handle_list_tools() -> list[types.Tool]:
"""
List available tools.
Each tool specifies its arguments using JSON Schema validation.
"""
return [
types.Tool(
name="Cognify_and_search",
description="Build knowledge graph from the input text and search in it.",
inputSchema={
"type": "object",
"properties": {
"text": {"type": "string"},
"search_query": {"type": "string"},
"graph_model_file": {"type": "string"},
"graph_model_name": {"type": "string"},
},
"required": ["text", "search_query"],
},
)
]
@server.call_tool()
async def handle_call_tool(
name: str, arguments: dict | None
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
"""
Handle tool execution requests.
Tools can modify server state and notify clients of changes.
"""
if name == "Cognify_and_search":
with open(os.devnull, "w") as fnull:
with redirect_stdout(fnull), redirect_stderr(fnull):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
if not arguments:
raise ValueError("Missing arguments")
text = arguments.get("text")
search_query = arguments.get("search_query")
if ("graph_model_file" in arguments) and ("graph_model_name" in arguments):
model_file = arguments.get("graph_model_file")
model_name = arguments.get("graph_model_name")
graph_model = load_class(model_file, model_name)
else:
graph_model = KnowledgeGraph
await cognee.add(text)
await cognee.cognify(graph_model=graph_model)
search_results = await cognee.search(
SearchType.INSIGHTS, query_text=search_query
)
results = retrieved_edges_to_string(search_results)
return [
types.TextContent(
type="text",
text=results,
)
]
else:
raise ValueError(f"Unknown tool: {name}")
async def main():
# Run the server using stdin/stdout streams
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="mcpcognee",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)

94
cognee-mcp/pyproject.toml Normal file
View file

@ -0,0 +1,94 @@
[project]
name = "mcpcognee"
version = "0.1.0"
description = "A MCP server project"
readme = "README.md"
requires-python = ">=3.11"
dependencies = [
"mcp>=1.1.1",
"openai==1.52.0",
"pydantic==2.8.2",
"python-dotenv==1.0.1",
"fastapi>=0.109.2,<0.110.0",
"uvicorn==0.22.0",
"requests==2.32.3",
"aiohttp==3.10.10",
"typing_extensions==4.12.2",
"nest_asyncio==1.6.0",
"numpy==1.26.4",
"datasets==3.1.0",
"falkordb==1.0.9", # Optional
"boto3>=1.26.125,<2.0.0",
"botocore>=1.35.54,<2.0.0",
"gunicorn>=20.1.0,<21.0.0",
"sqlalchemy==2.0.35",
"instructor==1.5.2",
"networkx>=3.2.1,<4.0.0",
"aiosqlite>=0.20.0,<0.21.0",
"pandas==2.0.3",
"filetype>=1.2.0,<2.0.0",
"nltk>=3.8.1,<4.0.0",
"dlt[sqlalchemy]>=1.4.1,<2.0.0",
"aiofiles>=23.2.1,<24.0.0",
"qdrant-client>=1.9.0,<2.0.0", # Optional
"graphistry>=0.33.5,<0.34.0",
"tenacity>=8.4.1,<9.0.0",
"weaviate-client==4.6.7", # Optional
"scikit-learn>=1.5.0,<2.0.0",
"pypdf>=4.1.0,<5.0.0",
"neo4j>=5.20.0,<6.0.0", # Optional
"jinja2>=3.1.3,<4.0.0",
"matplotlib>=3.8.3,<4.0.0",
"tiktoken==0.7.0",
"langchain_text_splitters==0.3.2", # Optional
"langsmith==0.1.139", # Optional
"langdetect==1.0.9",
"posthog>=3.5.0,<4.0.0", # Optional
"lancedb==0.15.0",
"litellm==1.49.1",
"groq==0.8.0", # Optional
"langfuse>=2.32.0,<3.0.0", # Optional
"pydantic-settings>=2.2.1,<3.0.0",
"anthropic>=0.26.1,<1.0.0",
"sentry-sdk[fastapi]>=2.9.0,<3.0.0",
"fastapi-users[sqlalchemy]", # Optional
"alembic>=1.13.3,<2.0.0",
"asyncpg==0.30.0", # Optional
"pgvector>=0.3.5,<0.4.0", # Optional
"psycopg2>=2.9.10,<3.0.0", # Optional
"llama-index-core>=0.11.22,<0.12.0", # Optional
"deepeval>=2.0.1,<3.0.0", # Optional
"transformers>=4.46.3,<5.0.0",
"pymilvus>=2.5.0,<3.0.0", # Optional
"unstructured[csv,doc,docx,epub,md,odt,org,ppt,pptx,rst,rtf,tsv,xlsx]>=0.16.10,<1.0.0", # Optional
"pytest>=7.4.0,<8.0.0",
"pytest-asyncio>=0.21.1,<0.22.0",
"coverage>=7.3.2,<8.0.0",
"mypy>=1.7.1,<2.0.0",
"deptry>=0.20.0,<0.21.0",
"debugpy==1.8.2",
"pylint>=3.0.3,<4.0.0",
"ruff>=0.2.2,<0.3.0",
"tweepy==4.14.0",
"gitpython>=3.1.43,<4.0.0",
"cognee",
]
[[project.authors]]
name = "Rita Aleksziev"
email = "rita@topoteretes.com"
[build-system]
requires = [ "hatchling",]
build-backend = "hatchling.build"
[tool.uv.sources]
cognee = { path = "../../cognee" }
[dependency-groups]
dev = [
"cognee",
]
[project.scripts]
mcpcognee = "mcpcognee:main"