diff --git a/cognee/api/v1/cognify/memify.py b/cognee/api/v1/cognify/memify.py index 86f84626a..dd089c060 100644 --- a/cognee/api/v1/cognify/memify.py +++ b/cognee/api/v1/cognify/memify.py @@ -33,24 +33,24 @@ async def memify( user: User = None, node_type: Optional[Type] = NodeSet, node_name: Optional[List[str]] = None, - cypher_query: Optional[str] = None, - vector_db_config: dict = None, - graph_db_config: dict = None, + vector_db_config: Optional[dict] = None, + graph_db_config: Optional[dict] = None, run_in_background: bool = False, ): """ - Prerequisites: - - **LLM_API_KEY**: Must be configured (required for entity extraction and graph generation) - - **Data Added**: Must have data previously added via `cognee.add()` and `cognee.cognify()` - - **Vector Database**: Must be accessible for embeddings storage - - **Graph Database**: Must be accessible for relationship storage - Args: - datasets: Dataset name(s) or dataset uuid to process. Processes all available data if None. + extraction_tasks: List of Cognee Tasks to execute for graph/data extraction. + enrichment_tasks: List of Cognee Tasks to handle enrichment of provided graph/data from extraction tasks. + data: The data to ingest. Can be anything when custom extraction and enrichment tasks are used. + Data provided here will be forwarded to the first extraction task in the pipeline as input. + If no data is provided the whole graph (or subgraph if node_name/node_type is specified) will be forwarded + datasets: Dataset name(s) or dataset uuid to process. Processes all available datasets if None. - Single dataset: "my_dataset" - Multiple datasets: ["docs", "research", "reports"] - None: Process all datasets for the user user: User context for authentication and data access. Uses default if None. + node_type: Filter graph to specific entity types (for advanced filtering). Used when no data is provided. + node_name: Filter graph to specific named entities (for targeted search). Used when no data is provided. vector_db_config: Custom vector database configuration for embeddings storage. graph_db_config: Custom graph database configuration for relationship storage. run_in_background: If True, starts processing asynchronously and returns immediately. @@ -60,12 +60,9 @@ async def memify( """ if not data: - if cypher_query: - pass - else: - memory_fragment = await get_memory_fragment(node_type=node_type, node_name=node_name) - # Subgraphs should be a single element in the list to represent one data item - data = [memory_fragment] + memory_fragment = await get_memory_fragment(node_type=node_type, node_name=node_name) + # Subgraphs should be a single element in the list to represent one data item + data = [memory_fragment] memify_tasks = [ *extraction_tasks, # Unpack tasks provided to memify pipeline