feat: Test db examples (#817)
<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Co-authored-by: Boris <boris@topoteretes.com> Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
This commit is contained in:
parent
1dd179b6dd
commit
3b07f3c08d
15 changed files with 1039 additions and 9 deletions
269
.github/workflows/db_examples_tests.yml
vendored
Normal file
269
.github/workflows/db_examples_tests.yml
vendored
Normal file
|
|
@ -0,0 +1,269 @@
|
|||
name: Reusable DB Examples Tests
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
databases:
|
||||
required: false
|
||||
type: string
|
||||
default: "all"
|
||||
description: "Which databases to run (comma-separated or 'all')"
|
||||
python-version:
|
||||
required: false
|
||||
type: string
|
||||
default: "3.11.x"
|
||||
secrets:
|
||||
LLM_MODEL:
|
||||
required: true
|
||||
LLM_ENDPOINT:
|
||||
required: true
|
||||
LLM_API_KEY:
|
||||
required: true
|
||||
LLM_API_VERSION:
|
||||
required: true
|
||||
EMBEDDING_MODEL:
|
||||
required: true
|
||||
EMBEDDING_ENDPOINT:
|
||||
required: true
|
||||
EMBEDDING_API_KEY:
|
||||
required: true
|
||||
EMBEDDING_API_VERSION:
|
||||
required: true
|
||||
QDRANT_API_URL:
|
||||
required: false
|
||||
QDRANT_API_KEY:
|
||||
required: false
|
||||
WEAVIATE_API_URL:
|
||||
required: false
|
||||
WEAVIATE_API_KEY:
|
||||
required: false
|
||||
POSTGRES_PASSWORD:
|
||||
required: false
|
||||
NEO4J_API_URL:
|
||||
required: false
|
||||
NEO4J_API_KEY:
|
||||
required: false
|
||||
|
||||
|
||||
|
||||
|
||||
jobs:
|
||||
run-db-example-neo4j:
|
||||
name: "Neo4j DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'neo4j') }}
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@master
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install Neo4j extra
|
||||
run: |
|
||||
poetry install -E neo4j
|
||||
|
||||
- name: Run Neo4j Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
GRAPH_DATABASE_PROVIDER: "neo4j"
|
||||
GRAPH_DATABASE_URL: ${{ secrets.NEO4J_API_URL }}
|
||||
GRAPH_DATABASE_USERNAME: "neo4j"
|
||||
GRAPH_DATABASE_PASSWORD: ${{ secrets.NEO4J_API_KEY }}
|
||||
run: |
|
||||
poetry run python examples/database_examples/neo4j_example.py
|
||||
|
||||
run-db-example-kuzu:
|
||||
name: "Kuzu DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'kuzu') }}
|
||||
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install Kuzu extra
|
||||
run: |
|
||||
poetry install -E kuzu
|
||||
|
||||
- name: Run Kuzu Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
GRAPH_DATABASE_PROVIDER: "kuzu"
|
||||
run: |
|
||||
poetry run python examples/database_examples/kuzu_example.py
|
||||
|
||||
run-db-example-milvus:
|
||||
name: "Milvus DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'milvus') }}
|
||||
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install Milvus extra
|
||||
run: |
|
||||
poetry install -E milvus
|
||||
|
||||
- name: Run Milvus Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
run: |
|
||||
poetry run python examples/database_examples/milvus_example.py
|
||||
|
||||
run-db-example-weaviate:
|
||||
name: "Weaviate DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'weaviate') }}
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install Weaviate extra
|
||||
run: |
|
||||
poetry install -E weaviate
|
||||
|
||||
- name: Run Weaviate Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
VECTOR_DB_URL: ${{ secrets.WEAVIATE_API_URL }}
|
||||
VECTOR_DB_KEY: ${{ secrets.WEAVIATE_API_KEY }}
|
||||
run: |
|
||||
poetry run python examples/database_examples/weaviate_example.py
|
||||
|
||||
run-db-example-qdrant:
|
||||
name: "Qdrant DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'qdrant') }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@master
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install Qdrant extra
|
||||
run: |
|
||||
poetry install -E qdrant
|
||||
|
||||
- name: Run Qdrant Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
VECTOR_DB_URL: ${{ secrets.QDRANT_API_URL }}
|
||||
VECTOR_DB_KEY: ${{ secrets.QDRANT_API_KEY }}
|
||||
run: |
|
||||
poetry run python examples/database_examples/qdrant_example.py
|
||||
|
||||
run-db-example-pgvector:
|
||||
name: "PostgreSQL PGVector DB Example Test"
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'postgres') }}
|
||||
services:
|
||||
postgres:
|
||||
image: pgvector/pgvector:pg17
|
||||
env:
|
||||
POSTGRES_USER: cognee
|
||||
POSTGRES_PASSWORD: ${{ secrets.POSTGRES_PASSWORD }}
|
||||
POSTGRES_DB: cognee_db
|
||||
options: >-
|
||||
--health-cmd pg_isready
|
||||
--health-interval 10s
|
||||
--health-timeout 5s
|
||||
--health-retries 5
|
||||
ports:
|
||||
- 5432:5432
|
||||
|
||||
steps:
|
||||
- name: Check out
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Install PGVector extra
|
||||
run: |
|
||||
poetry install -E postgres
|
||||
|
||||
- name: Run PGVector Example
|
||||
env:
|
||||
ENV: dev
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
run: |
|
||||
poetry run python examples/database_examples/pgvector_example.py
|
||||
|
||||
|
||||
8
.github/workflows/test_suites.yml
vendored
8
.github/workflows/test_suites.yml
vendored
|
|
@ -77,6 +77,12 @@ jobs:
|
|||
uses: ./.github/workflows/examples_tests.yml
|
||||
secrets: inherit
|
||||
|
||||
db-examples-tests:
|
||||
name: DB Examples Tests
|
||||
needs: [vector-db-tests]
|
||||
uses: ./.github/workflows/db_examples_tests.yml
|
||||
secrets: inherit
|
||||
|
||||
# Additional LLM tests
|
||||
gemini-tests:
|
||||
name: Gemini Tests
|
||||
|
|
@ -113,6 +119,7 @@ jobs:
|
|||
python-version-tests,
|
||||
vector-db-tests,
|
||||
example-tests,
|
||||
db-examples-tests,
|
||||
gemini-tests,
|
||||
ollama-tests,
|
||||
relational-db-migration-tests,
|
||||
|
|
@ -131,6 +138,7 @@ jobs:
|
|||
"${{ needs.python-version-tests.result }}" == "success" &&
|
||||
"${{ needs.vector-db-tests.result }}" == "success" &&
|
||||
"${{ needs.example-tests.result }}" == "success" &&
|
||||
"${{ needs.db-examples-tests.result }}" == "success" &&
|
||||
"${{ needs.relational-db-migration-tests.result }}" == "success" &&
|
||||
"${{ needs.gemini-tests.result }}" == "success" &&
|
||||
"${{ needs.docker-compose-test.result }}" == "success" &&
|
||||
|
|
|
|||
|
|
@ -155,7 +155,7 @@ class config:
|
|||
if hasattr(graph_db_config, key):
|
||||
object.__setattr__(graph_db_config, key, value)
|
||||
else:
|
||||
raise AttributeError(message=f"'{key}' is not a valid attribute of the config.")
|
||||
raise AttributeError(f"'{key}' is not a valid attribute of the config.")
|
||||
|
||||
@staticmethod
|
||||
def set_vector_db_config(config_dict: dict):
|
||||
|
|
|
|||
|
|
@ -178,10 +178,18 @@ class MilvusAdapter(VectorDBInterface):
|
|||
):
|
||||
from pymilvus import MilvusException, exceptions
|
||||
|
||||
if limit <= 0:
|
||||
return []
|
||||
client = self.get_milvus_client()
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
||||
if not client.has_collection(collection_name=collection_name):
|
||||
logger.warning(
|
||||
f"Collection '{collection_name}' not found in MilvusAdapter.search; returning []."
|
||||
)
|
||||
return []
|
||||
|
||||
try:
|
||||
query_vector = query_vector or (await self.embed_data([query_text]))[0]
|
||||
|
||||
|
|
@ -208,12 +216,19 @@ class MilvusAdapter(VectorDBInterface):
|
|||
)
|
||||
for result in results[0]
|
||||
]
|
||||
except exceptions.CollectionNotExistException as error:
|
||||
raise CollectionNotFoundError(
|
||||
f"Collection '{collection_name}' does not exist!"
|
||||
) from error
|
||||
except exceptions.CollectionNotExistException:
|
||||
logger.warning(
|
||||
f"Collection '{collection_name}' not found (exception) in MilvusAdapter.search; returning []."
|
||||
)
|
||||
return []
|
||||
except MilvusException as e:
|
||||
logger.error(f"Error during search in collection '{collection_name}': {str(e)}")
|
||||
# Catch other Milvus errors that are "collection not found" (paranoid safety)
|
||||
if "collection not found" in str(e).lower() or "schema" in str(e).lower():
|
||||
logger.warning(
|
||||
f"Collection '{collection_name}' not found (MilvusException) in MilvusAdapter.search; returning []."
|
||||
)
|
||||
return []
|
||||
logger.error(f"Error searching Milvus collection '{collection_name}': {e}")
|
||||
raise e
|
||||
|
||||
async def batch_search(
|
||||
|
|
|
|||
|
|
@ -159,12 +159,24 @@ class QDrantAdapter(VectorDBInterface):
|
|||
query_vector: Optional[List[float]] = None,
|
||||
limit: int = 15,
|
||||
with_vector: bool = False,
|
||||
):
|
||||
) -> List[ScoredResult]:
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
|
||||
if query_text is None and query_vector is None:
|
||||
raise InvalidValueError(message="One of query_text or query_vector must be provided!")
|
||||
|
||||
if limit <= 0:
|
||||
return []
|
||||
|
||||
if not await self.has_collection(collection_name):
|
||||
logger.warning(
|
||||
f"Collection '{collection_name}' not found in QdrantAdapter.search; returning []."
|
||||
)
|
||||
return []
|
||||
|
||||
if query_vector is None:
|
||||
query_vector = (await self.embed_data([query_text]))[0]
|
||||
|
||||
try:
|
||||
client = self.get_qdrant_client()
|
||||
|
||||
|
|
|
|||
|
|
@ -113,7 +113,7 @@ class WeaviateAdapter(VectorDBInterface):
|
|||
# )
|
||||
else:
|
||||
data_point: DataObject = data_points[0]
|
||||
if collection.data.exists(data_point.uuid):
|
||||
if await collection.data.exists(data_point.uuid):
|
||||
return await collection.data.update(
|
||||
uuid=data_point.uuid,
|
||||
vector=data_point.vector,
|
||||
|
|
|
|||
|
|
@ -146,7 +146,7 @@ async def brute_force_search(
|
|||
async def search_in_collection(collection_name: str):
|
||||
try:
|
||||
return await vector_engine.search(
|
||||
collection_name=collection_name, query_text=query, limit=0
|
||||
collection_name=collection_name, query_text=query, limit=50
|
||||
)
|
||||
except CollectionNotFoundError:
|
||||
return []
|
||||
|
|
|
|||
87
examples/database_examples/chromadb_example.py
Normal file
87
examples/database_examples/chromadb_example.py
Normal file
|
|
@ -0,0 +1,87 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with ChromaDB
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use ChromaDB as vector database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
# Configure ChromaDB as the vector database provider
|
||||
cognee.config.set_vector_db_config(
|
||||
{
|
||||
"vector_db_url": "http://localhost:8000", # Default ChromaDB server URL
|
||||
"vector_db_key": "", # ChromaDB doesn't require an API key by default
|
||||
"vector_db_provider": "chromadb", # Specify ChromaDB as provider
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "chromadb_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """ChromaDB is an open-source embedding database.
|
||||
It allows users to store and query embeddings and their associated metadata.
|
||||
ChromaDB can be deployed in various ways: in-memory, on disk via sqlite, or as a persistent service.
|
||||
It is designed to be fast, scalable, and easy to use, making it a popular choice for AI applications.
|
||||
The database is built to handle vector search efficiently, which is essential for semantic search applications.
|
||||
ChromaDB supports multiple distance metrics for vector similarity search and can be integrated with various ML frameworks."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "ChromaDB"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="ChromaDB")
|
||||
print("\nInsights about ChromaDB:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "vector search"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="vector search", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about vector search:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
87
examples/database_examples/falkordb_example.py
Normal file
87
examples/database_examples/falkordb_example.py
Normal file
|
|
@ -0,0 +1,87 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with FalkorDB
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use FalkorDB as graph database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
# Configure FalkorDB as the graph database provider
|
||||
cognee.config.set_graph_db_config(
|
||||
{
|
||||
"graph_database_url": "localhost", # FalkorDB URL (using Redis protocol)
|
||||
"graph_database_port": 6379,
|
||||
"graph_database_provider": "falkordb",
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "falkordb_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """FalkorDB is a graph database that evolved from RedisGraph.
|
||||
It is focused on providing high-performance graph operations.
|
||||
FalkorDB uses sparse adjacency matrices to represent the graph data structure.
|
||||
It supports the Cypher query language for querying graph data.
|
||||
FalkorDB can be integrated with vector search capabilities for AI applications.
|
||||
It provides a Redis module, allowing users to leverage Redis's features alongside graph capabilities."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "FalkorDB"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="FalkorDB")
|
||||
print("\nInsights about FalkorDB:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "graph database"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about graph database:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
85
examples/database_examples/kuzu_example.py
Normal file
85
examples/database_examples/kuzu_example.py
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with KuzuDB
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use KuzuDB as graph database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
# Configure KuzuDB as the graph database provider
|
||||
cognee.config.set_graph_db_config(
|
||||
{
|
||||
"graph_database_provider": "kuzu", # Specify KuzuDB as provider
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "kuzu_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """KuzuDB is a graph database system optimized for running complex graph analytics.
|
||||
It is designed to be a high-performance graph database for data science workloads.
|
||||
KuzuDB is built with modern hardware optimizations in mind.
|
||||
It provides support for property graphs and offers a Cypher-like query language.
|
||||
KuzuDB can handle both transactional and analytical graph workloads.
|
||||
The database now includes vector search capabilities for AI applications and semantic search."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "KuzuDB"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="KuzuDB")
|
||||
print("\nInsights about KuzuDB:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "graph database"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about graph database:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
89
examples/database_examples/milvus_example.py
Normal file
89
examples/database_examples/milvus_example.py
Normal file
|
|
@ -0,0 +1,89 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with Milvus
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use Milvus as vector database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
local_milvus_db_path = os.path.join(cognee_directory_path, "databases", "milvus.db")
|
||||
|
||||
# Configure Milvus as the vector database provider
|
||||
cognee.config.set_vector_db_config(
|
||||
{
|
||||
"vector_db_url": local_milvus_db_path, # Enter Milvus Endpoint if exist
|
||||
"vector_db_key": "", # Enter Token
|
||||
"vector_db_provider": "milvus", # Specify Milvus as provider
|
||||
}
|
||||
)
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "milvus_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """Milvus is an open-source vector database built to power AI applications.
|
||||
It is designed for storing, indexing, and querying large-scale vector datasets.
|
||||
Milvus implements efficient approximate nearest neighbor search algorithms.
|
||||
It features advanced indexing techniques like HNSW, IVF, PQ, and more.
|
||||
Milvus supports hybrid searches combining vector similarity with scalar filtering.
|
||||
The system can be deployed standalone, in clusters, or through a cloud service."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "Milvus"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Milvus")
|
||||
print("\nInsights about Milvus:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "vector similarity"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="vector similarity", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about vector similarity:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
94
examples/database_examples/neo4j_example.py
Normal file
94
examples/database_examples/neo4j_example.py
Normal file
|
|
@ -0,0 +1,94 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with Neo4j
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use Neo4j as graph database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
|
||||
# Set up Neo4j credentials in .env file and get the values from environment variables
|
||||
neo4j_url = os.getenv("GRAPH_DATABASE_URL")
|
||||
neo4j_user = os.getenv("GRAPH_DATABASE_USERNAME")
|
||||
neo4j_pass = os.getenv("GRAPH_DATABASE_PASSWORD")
|
||||
|
||||
# Configure Neo4j as the graph database provider
|
||||
cognee.config.set_graph_db_config(
|
||||
{
|
||||
"graph_database_url": neo4j_url, # Neo4j Bolt URL
|
||||
"graph_database_provider": "neo4j", # Specify Neo4j as provider
|
||||
"graph_database_username": neo4j_user, # Neo4j username
|
||||
"graph_database_password": neo4j_pass, # Neo4j password
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "neo4j_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """Neo4j is a graph database management system.
|
||||
It stores data in nodes and relationships rather than tables as in traditional relational databases.
|
||||
Neo4j provides a powerful query language called Cypher for graph traversal and analysis.
|
||||
It now supports vector indexing for similarity search with the vector index plugin.
|
||||
Neo4j allows embedding generation and vector search to be combined with graph operations.
|
||||
Applications can use Neo4j to connect vector search with graph context for more meaningful results."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "Neo4j"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Neo4j")
|
||||
print("\nInsights about Neo4j:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "graph database"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about graph database:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
99
examples/database_examples/pgvector_example.py
Normal file
99
examples/database_examples/pgvector_example.py
Normal file
|
|
@ -0,0 +1,99 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with PGVector
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use PostgreSQL with PGVector extension as vector database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
# Configure PGVector as the vector database provider
|
||||
cognee.config.set_vector_db_config(
|
||||
{
|
||||
"vector_db_provider": "pgvector", # Specify PGVector as provider
|
||||
}
|
||||
)
|
||||
|
||||
# Configure PostgreSQL connection details
|
||||
# These settings are required for PGVector
|
||||
cognee.config.set_relational_db_config(
|
||||
{
|
||||
"db_path": "",
|
||||
"db_name": "cognee_db",
|
||||
"db_host": "127.0.0.1",
|
||||
"db_port": "5432",
|
||||
"db_username": "cognee",
|
||||
"db_password": "cognee",
|
||||
"db_provider": "postgres",
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "pgvector_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """PGVector is an extension for PostgreSQL that adds vector similarity search capabilities.
|
||||
It supports multiple indexing methods, including IVFFlat, HNSW, and brute-force search.
|
||||
PGVector allows you to store vector embeddings directly in your PostgreSQL database.
|
||||
It provides distance functions like L2 distance, inner product, and cosine distance.
|
||||
Using PGVector, you can perform both metadata filtering and vector similarity search in a single query.
|
||||
The extension is often used for applications like semantic search, recommendations, and image similarity."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "PGVector"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="PGVector")
|
||||
print("\nInsights about PGVector:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "vector similarity"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="vector similarity", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about vector similarity:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
93
examples/database_examples/qdrant_example.py
Normal file
93
examples/database_examples/qdrant_example.py
Normal file
|
|
@ -0,0 +1,93 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with Qdrant
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use Qdrant as vector database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
|
||||
# Set up Qdrant credentials in .env file and get the values from environment variables
|
||||
qdrant_url = os.getenv("VECTOR_DB_URL")
|
||||
qdrant_key = os.getenv("VECTOR_DB_KEY")
|
||||
|
||||
# Configure Qdrant as the vector database provider
|
||||
|
||||
cognee.config.set_vector_db_config(
|
||||
{
|
||||
"vector_db_url": qdrant_url, # Enter Qdrant URL
|
||||
"vector_db_key": qdrant_key, # API key needed
|
||||
"vector_db_provider": "qdrant", # Specify Qdrant as provider
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "qdrant_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """Qdrant is a vector similarity search engine and vector database.
|
||||
It provides a production-ready service with a convenient API for storing, searching, and managing vectors.
|
||||
Qdrant supports filtering during vector search, which is essential for real-world applications.
|
||||
The database implements various performance optimizations, including HNSW index for approximate nearest neighbor search.
|
||||
Qdrant can be deployed via Docker, as a managed cloud service, or directly on bare metal.
|
||||
It also supports payload and metadata storage alongside the vectors, allowing for rich data retrieval."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "Qdrant"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Qdrant")
|
||||
print("\nInsights about Qdrant:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "vector search"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="vector search", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about vector search:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
92
examples/database_examples/weaviate_example.py
Normal file
92
examples/database_examples/weaviate_example.py
Normal file
|
|
@ -0,0 +1,92 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example script demonstrating how to use Cognee with Weaviate
|
||||
|
||||
This example:
|
||||
1. Configures Cognee to use Weaviate as vector database
|
||||
2. Sets up data directories
|
||||
3. Adds sample data to Cognee
|
||||
4. Processes (cognifies) the data
|
||||
5. Performs different types of searches
|
||||
"""
|
||||
|
||||
# Set up Weaviate credentials in .env file and get the values from environment variables
|
||||
weaviate_url = os.getenv("VECTOR_DB_URL")
|
||||
weaviate_key = os.getenv("VECTOR_DB_KEY")
|
||||
|
||||
# Configure Weaviate as the vector database provider
|
||||
cognee.config.set_vector_db_config(
|
||||
{
|
||||
"vector_db_url": weaviate_url, # Set your Weaviate Endpoint
|
||||
"vector_db_key": weaviate_key, # Set your Weaviate API key
|
||||
"vector_db_provider": "weaviate", # Specify Weaviate as provider
|
||||
}
|
||||
)
|
||||
|
||||
# Set up data directories for storing documents and system files
|
||||
# You should adjust these paths to your needs
|
||||
current_dir = pathlib.Path(__file__).parent
|
||||
data_directory_path = str(current_dir / "data_storage")
|
||||
cognee.config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(current_dir / "cognee_system")
|
||||
cognee.config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Clean any existing data (optional)
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# Create a dataset
|
||||
dataset_name = "weaviate_example"
|
||||
|
||||
# Add sample text to the dataset
|
||||
sample_text = """Weaviate is an open-source vector database that stores both objects and vectors.
|
||||
It enables vector search with GraphQL-based filtering capabilities.
|
||||
Weaviate can be deployed in the cloud, on-premise, or embedded in your application.
|
||||
It allows users to search through vectors using different algorithms and metrics.
|
||||
Weaviate supports various modules for text2vec transformations, including BERT, OpenAI, and other models.
|
||||
It can index data in multiple ways and offers features like semantic search, classification, and contextualization."""
|
||||
|
||||
# Add the sample text to the dataset
|
||||
await cognee.add([sample_text], dataset_name)
|
||||
|
||||
# Process the added document to extract knowledge
|
||||
await cognee.cognify([dataset_name])
|
||||
|
||||
# Now let's perform some searches
|
||||
# 1. Search for insights related to "Weaviate"
|
||||
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Weaviate")
|
||||
print("\nInsights about Weaviate:")
|
||||
for result in insights_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 2. Search for text chunks related to "vector search"
|
||||
chunks_results = await cognee.search(
|
||||
query_type=SearchType.CHUNKS, query_text="vector search", datasets=[dataset_name]
|
||||
)
|
||||
print("\nChunks about vector search:")
|
||||
for result in chunks_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# 3. Get graph completion related to databases
|
||||
graph_completion_results = await cognee.search(
|
||||
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
||||
)
|
||||
print("\nGraph completion for databases:")
|
||||
for result in graph_completion_results:
|
||||
print(f"- {result}")
|
||||
|
||||
# Clean up (optional)
|
||||
# await cognee.prune.prune_data()
|
||||
# await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
Loading…
Add table
Reference in a new issue