Merge pull request #6 from topoteretes/feature/improve_actions
Feature/improve actions
This commit is contained in:
commit
3983cbbf62
8 changed files with 1155 additions and 667 deletions
36
.github/actions/image_builder/action.yaml
vendored
Normal file
36
.github/actions/image_builder/action.yaml
vendored
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
name: 'Build Docker images for PromethAI'
|
||||
description: 'Build PromethAI-related Docker images and push to the Docker registry (AWS ECR)'
|
||||
inputs:
|
||||
stage:
|
||||
description: 'The stage of the pipeline, such as "dev" or "prd", for the PromethAI app'
|
||||
required: true
|
||||
aws_account_id:
|
||||
description: 'The AWS account ID for the PromethAI app'
|
||||
required: true
|
||||
should_publish:
|
||||
description: 'Whether to publish the PromethAI Docker image to AWS ECR; should be either "true" or "false"'
|
||||
required: true
|
||||
ecr_image_repo_name:
|
||||
description: 'The Docker image ECR repository name for the PromethAI app, such as "workflows"'
|
||||
required: true
|
||||
dockerfile_location:
|
||||
description: 'The directory location of the Dockerfile for the PromethAI app'
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build PromethAI App Docker image
|
||||
shell: bash
|
||||
env:
|
||||
STAGE: ${{ inputs.stage }}
|
||||
run: |
|
||||
export SHA_SHORT="$(git rev-parse --short HEAD)"
|
||||
export CUR_DATE="$(date +%Y%m%d%H%M%S)"
|
||||
export VERSION="${{ inputs.stage }}-$CUR_DATE-$SHA_SHORT"
|
||||
export STAGE="${{ inputs.stage }}"
|
||||
export APP_DIR="$PWD/${{ inputs.dockerfile_location }}"
|
||||
image_name="${{ inputs.ecr_image_repo_name }}" docker_login="true" version="$VERSION" account="${{ inputs.aws_account_id }}" app_dir="$APP_DIR" publish="${{ inputs.should_publish }}" ./bin/dockerize
|
||||
echo "Docker tag is: $VERSION"
|
||||
echo $VERSION > /tmp/.DOCKER_IMAGE_VERSION
|
||||
|
||||
76
.github/workflows/cd.yaml
vendored
Normal file
76
.github/workflows/cd.yaml
vendored
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
name: Publishing promethai-backend Docker image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- dev
|
||||
- feature/*
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
|
||||
env:
|
||||
AWS_ROLE_DEV_CICD: "arn:aws:iam::463722570299:role/promethai-dev-base-role-github-ci-cd"
|
||||
AWS_ACCOUNT_ID_DEV: "463722570299"
|
||||
|
||||
jobs:
|
||||
|
||||
publish_docker_to_ecr:
|
||||
name: Publish Docker PromethAI image
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Take code from repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Set environment variable for stage
|
||||
id: set-env
|
||||
run: |
|
||||
if [[ "${{ github.ref }}" == "refs/heads/main" ]]; then
|
||||
echo "STAGE=prd" >> $GITHUB_ENV
|
||||
echo "::set-output name=stage::prd"
|
||||
else
|
||||
echo "STAGE=dev" >> $GITHUB_ENV
|
||||
echo "::set-output name=stage::dev"
|
||||
fi
|
||||
- name: Use output
|
||||
run: echo "The stage is ${{ steps.set-env.outputs.stage }}"
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
role-to-assume: ${{ env.AWS_ROLE_DEV_CICD }}
|
||||
aws-region: eu-west-1
|
||||
- name: Create Docker image and push to ECR
|
||||
uses: ./.github/actions/image_builder
|
||||
id: generate-promethai-docker
|
||||
with:
|
||||
stage: dev
|
||||
aws_account_id: ${{ env.AWS_ACCOUNT_ID_DEV }}
|
||||
should_publish: true
|
||||
ecr_image_repo_name: promethai-dev-backend-promethai-backend-memory
|
||||
dockerfile_location: ./level_2
|
||||
- name: Export Docker image tag
|
||||
id: export-promethai-docker-tag
|
||||
run: |
|
||||
export DOCKER_TAG=$(cat /tmp/.DOCKER_IMAGE_VERSION)
|
||||
echo "Docker tag is: $DOCKER_TAG"
|
||||
echo "promethai_docker_tag_backend=$DOCKER_TAG" >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
promethai_docker_tag_backend: ${{ steps.export-promethai-docker-tag.outputs.promethai_docker_tag_backend }}
|
||||
|
||||
# apply_tf:
|
||||
# name: Trigger terraform apply workflow
|
||||
# runs-on: ubuntu-latest
|
||||
# needs: publish_docker_to_ecr
|
||||
# steps:
|
||||
# - name: TF apply workflow triggers step
|
||||
# uses: actions/github-script@v6
|
||||
# with:
|
||||
# github-token: ${{ secrets.PAT_FOR_CROSS_REPOS_CICD_TRIGGERING }}
|
||||
# script: |
|
||||
# await github.rest.actions.createWorkflowDispatch({
|
||||
# owner: 'topoteretes',
|
||||
# repo: 'PromethAI-Infra',
|
||||
# workflow_id: 'terraform.apply.yml',
|
||||
# ref: 'main'
|
||||
# })
|
||||
99
.github/workflows/cd_prd.yaml
vendored
Normal file
99
.github/workflows/cd_prd.yaml
vendored
Normal file
|
|
@ -0,0 +1,99 @@
|
|||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'examples/**'
|
||||
name: Publishing promethai-backend Docker image to prd ECR
|
||||
|
||||
env:
|
||||
AWS_ROLE_DEV_CICD: "arn:aws:iam::463722570299:role/promethai-dev-base-role-github-ci-cd"
|
||||
AWS_ACCOUNT_ID_DEV: "463722570299"
|
||||
ENVIRONMENT: prd
|
||||
|
||||
jobs:
|
||||
|
||||
publish_docker_to_ecr:
|
||||
name: Publish Docker PromethAI image
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Take code from repo
|
||||
uses: actions/checkout@v3
|
||||
- name: Set environment variable for stage
|
||||
id: set-env
|
||||
run: |
|
||||
if [[ "${{ github.ref }}" == "refs/heads/main" ]]; then
|
||||
echo "STAGE=prd" >> $GITHUB_ENV
|
||||
echo "::set-output name=stage::prd"
|
||||
else
|
||||
echo "STAGE=dev" >> $GITHUB_ENV
|
||||
echo "::set-output name=stage::dev"
|
||||
fi
|
||||
- name: Use output
|
||||
run: echo "The stage is ${{ steps.set-env.outputs.stage }}"
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
role-to-assume: ${{ env.AWS_ROLE_DEV_CICD }}
|
||||
aws-region: eu-west-1
|
||||
- name: Create Docker image and push to ECR
|
||||
uses: ./.github/actions/image_builder
|
||||
id: generate-promethai-docker
|
||||
with:
|
||||
stage: prd
|
||||
aws_account_id: ${{ env.AWS_ACCOUNT_ID_DEV }}
|
||||
should_publish: true
|
||||
ecr_image_repo_name: promethai-prd-backend-promethai-backend-memory
|
||||
dockerfile_location: ./level_2
|
||||
- name: Export Docker image tag
|
||||
id: export-promethai-docker-tag
|
||||
run: |
|
||||
export DOCKER_TAG=$(cat /tmp/.DOCKER_IMAGE_VERSION)
|
||||
echo "Docker tag is: $DOCKER_TAG"
|
||||
echo "promethai_docker_tag_backend=$DOCKER_TAG" >> $GITHUB_OUTPUT
|
||||
|
||||
# - name: Create Tag and Release
|
||||
# runs-on: ubuntu-latest
|
||||
# uses: actions/checkout@v3
|
||||
# needs: publish_docker_to_ecr # ensure this job runs after Docker image is pushed
|
||||
# steps:
|
||||
# - name: Check out code
|
||||
# uses: actions/checkout@v3
|
||||
# - name: Bump version and push tag
|
||||
# id: bump_version_and_push_tag
|
||||
# uses: anothrNick/github-tag-action@1.34.0
|
||||
# env:
|
||||
# GITHUB_TOKEN: ${{ secrets.PAT_FOR_CROSS_REPOS_CICD_TRIGGERING }}
|
||||
# WITH_V: true
|
||||
# DEFAULT_BUMP: 'minor' # or 'minor' or 'major'
|
||||
# - name: Create Release
|
||||
# id: create_release
|
||||
# uses: actions/create-release@v1
|
||||
# env:
|
||||
# GITHUB_TOKEN: ${{ secrets.PAT_FOR_CROSS_REPOS_CICD_TRIGGERING }}
|
||||
# with:
|
||||
# tag_name: ${{ steps.bump_version_and_push_tag.outputs.tag }}
|
||||
# release_name: Release ${{ steps.bump_version_and_push_tag.outputs.tag }}
|
||||
outputs:
|
||||
promethai_docker_tag_backend: ${{ steps.export-promethai-docker-tag.outputs.promethai_docker_tag_backend }}
|
||||
|
||||
# apply_tf:
|
||||
# name: Trigger terraform apply workflow
|
||||
# runs-on: ubuntu-latest
|
||||
# needs: publish_docker_to_ecr
|
||||
# steps:
|
||||
# - name: TF apply workflow triggers step
|
||||
# uses: actions/github-script@v6
|
||||
# with:
|
||||
# github-token: ${{ secrets.PAT_FOR_CROSS_REPOS_CICD_TRIGGERING }}
|
||||
# script: |
|
||||
# await github.rest.actions.createWorkflowDispatch({
|
||||
# owner: 'topoteretes',
|
||||
# repo: 'PromethAI-Infra',
|
||||
# workflow_id: 'terraform.apply.yml',
|
||||
# ref: 'main'
|
||||
# })
|
||||
25
.github/workflows/ci.yaml
vendored
Normal file
25
.github/workflows/ci.yaml
vendored
Normal file
|
|
@ -0,0 +1,25 @@
|
|||
name: Test build docker image for PromethAI backend app
|
||||
|
||||
on: pull_request
|
||||
|
||||
env:
|
||||
AWS_ACCOUNT_ID_DEV: "463722570299"
|
||||
|
||||
jobs:
|
||||
|
||||
build_docker:
|
||||
name: Build PromethAI Backend Docker App Image
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out PromethAI code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Build PromethAI backend Docker image tag
|
||||
id: backend-docker-tag
|
||||
run: |
|
||||
export SHA_SHORT="$(git rev-parse --short HEAD)"
|
||||
export CUR_DATE="$(date +%Y%m%d%H%M%S)"
|
||||
export VERSION="dev-$CUR_DATE-$SHA_SHORT"
|
||||
image_name="backend-memory" docker_login="false" version="$VERSION" account="${{ env.AWS_ACCOUNT_ID_DEV }}" app_dir="level_2" publish="false" ./bin/dockerize
|
||||
export DOCKER_TAG=$(cat level_2/tmp/.DOCKER_IMAGE_VERSION)
|
||||
echo "Successfully built PromethAI backend Docker tag is: $DOCKER_TAG"
|
||||
30
bin/dockerize
Executable file
30
bin/dockerize
Executable file
|
|
@ -0,0 +1,30 @@
|
|||
STAGE=${stage:-"dev"}
|
||||
SHA_SHORT="$(git rev-parse --short HEAD)"
|
||||
CUR_DATE="$(date +%Y%m%d%H%M%S)"
|
||||
VERSION="$STAGE-$CUR_DATE-$SHA_SHORT"
|
||||
IMAGE_NAME=${image_name:-promethai-${STAGE}-promethai-backend-memory}
|
||||
|
||||
REPO_NAME="${AWS_REPOSITORY}/${IMAGE_NAME}"
|
||||
FULL_IMAGE_NAME="${REPO_NAME}:${VERSION}"
|
||||
APP_DIR=${app_dir:-"./level_2"} # Updated this line
|
||||
|
||||
PUBLISH=${publish:-false}
|
||||
|
||||
echo "Building docker image ${FULL_IMAGE_NAME} located in dir ${app_dir}"
|
||||
|
||||
pushd "${APP_DIR}" &&
|
||||
docker buildx build --platform linux/amd64 \
|
||||
--build-arg STAGE=${STAGE} \
|
||||
-t "${FULL_IMAGE_NAME}" . &&
|
||||
echo "${VERSION}" >/tmp/.DOCKER_IMAGE_VERSION &&
|
||||
echo "Successfully built docker image ${FULL_IMAGE_NAME}"
|
||||
|
||||
if [ "${PUBLISH}" = true ]; then
|
||||
echo "Pushing docker image ${FULL_IMAGE_NAME} to ECR repository to AWS account ${AWS_DEPLOYMENT_ACCOUNT}"
|
||||
if [ "${PUBLISH}" = true ]; then
|
||||
echo "logging in"
|
||||
aws ecr get-login-password --region "${AWS_REGION}" | docker login --username AWS --password-stdin "${AWS_REPOSITORY}"
|
||||
fi
|
||||
docker push "${FULL_IMAGE_NAME}" &&
|
||||
echo "Successfully pushed docker image ${FULL_IMAGE_NAME} to ECR repository"
|
||||
fi
|
||||
|
|
@ -9,7 +9,8 @@ Initial code lets you do three operations:
|
|||
|
||||
1. Add to memory
|
||||
2. Retrieve from memory
|
||||
3. Structure the data to schema and load to duckdb
|
||||
3. Structure the data to schema
|
||||
4. Load to a database
|
||||
|
||||
#How to use
|
||||
|
||||
|
|
@ -38,16 +39,17 @@ The Memory API provides the following endpoints:
|
|||
- /run-buffer (POST)
|
||||
- /buffer/create-context (POST)
|
||||
|
||||
Here is a payload example:
|
||||
|
||||
|
||||
## How To Get Started
|
||||
|
||||
1. We do a post request to add-memory endpoint with the following payload:
|
||||
It will upload Jack London "Call of the Wild" to SEMANTIC memory
|
||||
```
|
||||
{
|
||||
curl -X POST http://localhost:8000/semantic/add-memory -H "Content-Type: application/json" -d '{
|
||||
"payload": {
|
||||
"user_id": "681",
|
||||
"session_id": "471",
|
||||
"model_speed": "slow",
|
||||
"prompt": "I want ",
|
||||
"pdf_url": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
|
||||
"prompt": "I am adding docs",
|
||||
"params": {
|
||||
"version": "1.0",
|
||||
"agreement_id": "AG123456",
|
||||
|
|
@ -60,7 +62,75 @@ Here is a payload example:
|
|||
"license": "MIT",
|
||||
"validity_start": "2023-08-01",
|
||||
"validity_end": "2024-07-31"
|
||||
},
|
||||
"loader_settings": {
|
||||
"format": "PDF",
|
||||
"source": "url",
|
||||
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
}'
|
||||
```
|
||||
|
||||
2. We run the buffer with the prompt "I want to know how does Buck adapt to life in the wild and then have that info translated to German "
|
||||
|
||||
```
|
||||
curl -X POST http://localhost:8000/run-buffer -H "Content-Type: application/json" -d '{
|
||||
"payload": {
|
||||
"user_id": "681",
|
||||
"prompt": "I want to know how does Buck adapt to life in the wild and then have that info translated to German ",
|
||||
"params": {
|
||||
"version": "1.0",
|
||||
"agreement_id": "AG123456",
|
||||
"privacy_policy": "https://example.com/privacy",
|
||||
"terms_of_service": "https://example.com/terms",
|
||||
"format": "json",
|
||||
"schema_version": "1.1",
|
||||
"checksum": "a1b2c3d4e5f6",
|
||||
"owner": "John Doe",
|
||||
"license": "MIT",
|
||||
"validity_start": "2023-08-01",
|
||||
"validity_end": "2024-07-31"
|
||||
},
|
||||
"attention_modulators": {
|
||||
"relevance": 0.0,
|
||||
"saliency": 0.1
|
||||
}
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
Other attention modulators that could be implemented:
|
||||
|
||||
"frequency": 0.5,
|
||||
"repetition": 0.5,
|
||||
"length": 0.5,
|
||||
"position": 0.5,
|
||||
"context": 0.5,
|
||||
"emotion": 0.5,
|
||||
"sentiment": 0.5,
|
||||
"perspective": 0.5,
|
||||
"style": 0.5,
|
||||
"grammar": 0.5,
|
||||
"spelling": 0.5,
|
||||
"logic": 0.5,
|
||||
"coherence": 0.5,
|
||||
"cohesion": 0.5,
|
||||
"plausibility": 0.5,
|
||||
"consistency": 0.5,
|
||||
"informativeness": 0.5,
|
||||
"specificity": 0.5,
|
||||
"detail": 0.5,
|
||||
"accuracy": 0.5,
|
||||
"topicality": 0.5,
|
||||
"focus": 0.5,
|
||||
"clarity": 0.5,
|
||||
"simplicity": 0.5,
|
||||
"naturalness": 0.5,
|
||||
"fluency": 0.5,
|
||||
"variety": 0.5,
|
||||
"vividness": 0.5,
|
||||
"originality": 0.5,
|
||||
"creativity": 0.5,
|
||||
"humor": 0.5,
|
||||
307
level_2/api.py
307
level_2/api.py
|
|
@ -1,23 +1,14 @@
|
|||
from io import BytesIO
|
||||
import logging
|
||||
import os
|
||||
from typing import Dict, Any
|
||||
|
||||
from langchain.document_loaders import PyPDFLoader
|
||||
|
||||
from level_2_pdf_vectorstore__dlt_contracts import Memory
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
from typing import Dict, Any
|
||||
import re
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uvicorn
|
||||
from fastapi import Request
|
||||
import yaml
|
||||
from fastapi import HTTPException
|
||||
from fastapi import FastAPI, UploadFile, File
|
||||
from typing import List
|
||||
import requests
|
||||
|
||||
from level_2_pdf_vectorstore__dlt_contracts import Memory
|
||||
from dotenv import load_dotenv
|
||||
# Set up logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, # Set the logging level (e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
||||
|
|
@ -25,26 +16,21 @@ logging.basicConfig(
|
|||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
||||
|
||||
load_dotenv()
|
||||
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
||||
|
||||
app = FastAPI(debug=True)
|
||||
|
||||
|
||||
from fastapi import Depends
|
||||
|
||||
|
||||
class ImageResponse(BaseModel):
|
||||
success: bool
|
||||
message: str
|
||||
|
||||
|
||||
|
||||
|
||||
@app.get("/", )
|
||||
@app.get(
|
||||
"/",
|
||||
)
|
||||
async def root():
|
||||
"""
|
||||
Root endpoint that returns a welcome message.
|
||||
|
|
@ -57,187 +43,99 @@ def health_check():
|
|||
Health check endpoint that returns the server status.
|
||||
"""
|
||||
return {"status": "OK"}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#curl -X POST -H "Content-Type: application/json" -d '{"data": "YourPayload"}' -F "files=@/path/to/your/pdf/file.pdf" http://127.0.0.1:8000/upload/
|
||||
|
||||
|
||||
class Payload(BaseModel):
|
||||
payload: Dict[str, Any]
|
||||
|
||||
# @app.post("/upload/", response_model=dict)
|
||||
# async def upload_pdf_and_payload(
|
||||
# payload: Payload,
|
||||
# # files: List[UploadFile] = File(...),
|
||||
# ):
|
||||
# try:
|
||||
# # Process the payload
|
||||
# decoded_payload = payload.payload
|
||||
# # except:
|
||||
# # pass
|
||||
# #
|
||||
# # return JSONResponse(content={"response": decoded_payload}, status_code=200)
|
||||
#
|
||||
# # Download the remote PDF if URL is provided
|
||||
# if 'pdf_url' in decoded_payload:
|
||||
# pdf_response = requests.get(decoded_payload['pdf_url'])
|
||||
# pdf_content = pdf_response.content
|
||||
#
|
||||
# logging.info("Downloaded PDF from URL")
|
||||
#
|
||||
# # Create an in-memory file-like object for the PDF content
|
||||
# pdf_stream = BytesIO(pdf_content)
|
||||
#
|
||||
# contents = pdf_stream.read()
|
||||
#
|
||||
# tmp_location = os.path.join('/tmp', "tmp.pdf")
|
||||
# with open(tmp_location, 'wb') as tmp_file:
|
||||
# tmp_file.write(contents)
|
||||
#
|
||||
# logging.info("Wrote PDF from URL")
|
||||
#
|
||||
# # Process the PDF using PyPDFLoader
|
||||
# loader = PyPDFLoader(tmp_location)
|
||||
# pages = loader.load_and_split()
|
||||
# logging.info(" PDF split into pages")
|
||||
# Memory_ = Memory(index_name="my-agent", user_id='555' )
|
||||
# await Memory_.async_init()
|
||||
# Memory_._add_episodic_memory(user_input="I want to get a schema for my data", content =pages)
|
||||
#
|
||||
#
|
||||
# # Run the buffer
|
||||
# response = Memory_._run_buffer(user_input="I want to get a schema for my data")
|
||||
# return JSONResponse(content={"response": response}, status_code=200)
|
||||
#
|
||||
# #to do: add the user id to the payload
|
||||
# #to do add the raw pdf to payload
|
||||
# # bb = await Memory_._run_buffer(user_input=decoded_payload['prompt'])
|
||||
# # print(bb)
|
||||
#
|
||||
#
|
||||
# except Exception as e:
|
||||
#
|
||||
# return {"error": str(e)}
|
||||
# # Here you can perform your processing on the PDF contents
|
||||
# # results.append({"filename": file.filename, "size": len(contents)})
|
||||
#
|
||||
# # Append the in-memory file to the files list
|
||||
# # files.append(UploadFile(pdf_stream, filename="downloaded.pdf"))
|
||||
#
|
||||
|
||||
|
||||
def memory_factory(memory_type):
|
||||
load_dotenv()
|
||||
|
||||
class Payload(BaseModel):
|
||||
payload: Dict[str, Any]
|
||||
|
||||
@app.post("/{memory_type}/add-memory", response_model=dict)
|
||||
async def add_memory(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
logging.info(" Init PDF processing")
|
||||
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
if 'pdf_url' in decoded_payload:
|
||||
pdf_response = requests.get(decoded_payload['pdf_url'])
|
||||
pdf_content = pdf_response.content
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
logging.info("Downloaded PDF from URL")
|
||||
await Memory_.async_init()
|
||||
|
||||
# Create an in-memory file-like object for the PDF content
|
||||
pdf_stream = BytesIO(pdf_content)
|
||||
|
||||
contents = pdf_stream.read()
|
||||
|
||||
tmp_location = os.path.join('/tmp', "tmp.pdf")
|
||||
with open(tmp_location, 'wb') as tmp_file:
|
||||
tmp_file.write(contents)
|
||||
|
||||
logging.info("Wrote PDF from URL")
|
||||
|
||||
# Process the PDF using PyPDFLoader
|
||||
loader = PyPDFLoader(tmp_location)
|
||||
# pages = loader.load_and_split()
|
||||
logging.info(" PDF split into pages")
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
memory_class = getattr(Memory_, f"_add_{memory_type}_memory", None)
|
||||
output= await memory_class(observation=str(loader), params =decoded_payload['params'])
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
memory_class = getattr(Memory_, f"_add_{memory_type}_memory", None)
|
||||
output = await memory_class(
|
||||
observation=decoded_payload["prompt"],
|
||||
loader_settings=decoded_payload["loader_settings"],
|
||||
params=decoded_payload["params"],
|
||||
)
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
return JSONResponse(
|
||||
content={"response": {"error": str(e)}}, status_code=503
|
||||
)
|
||||
|
||||
@app.post("/{memory_type}/fetch-memory", response_model=dict)
|
||||
async def fetch_memory(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
memory_class = getattr(Memory_, f"_fetch_{memory_type}_memory", None)
|
||||
output = memory_class(observation=decoded_payload['prompt'])
|
||||
output = memory_class(observation=decoded_payload["prompt"])
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
return JSONResponse(
|
||||
content={"response": {"error": str(e)}}, status_code=503
|
||||
)
|
||||
|
||||
@app.post("/{memory_type}/delete-memory", response_model=dict)
|
||||
async def delete_memory(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
|
||||
output = memory_class(observation=decoded_payload['prompt'])
|
||||
output = memory_class(observation=decoded_payload["prompt"])
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
return JSONResponse(
|
||||
content={"response": {"error": str(e)}}, status_code=503
|
||||
)
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
|
||||
memory_list = ["episodic", "buffer", "semantic"]
|
||||
for memory_type in memory_list:
|
||||
memory_factory(memory_type)
|
||||
|
||||
|
||||
|
||||
@app.get("/available-buffer-actions", response_model=dict)
|
||||
async def available_buffer_actions(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
|
|
@ -246,126 +144,73 @@ async def available_buffer_actions(
|
|||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
|
||||
|
||||
@app.post("/run-buffer", response_model=dict)
|
||||
async def available_buffer_actions(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
async def run_buffer(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
# memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
|
||||
output = await Memory_._run_buffer(user_input=decoded_payload['prompt'], params=decoded_payload['params'])
|
||||
output = await Memory_._run_main_buffer(
|
||||
user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
|
||||
)
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
|
||||
|
||||
@app.post("/buffer/create-context", response_model=dict)
|
||||
async def available_buffer_actions(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
async def create_context(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload['user_id'])
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
await Memory_.async_init()
|
||||
|
||||
# memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
|
||||
output = await Memory_._create_buffer_context(user_input=decoded_payload['prompt'], params=decoded_payload['params'])
|
||||
output = await Memory_._create_buffer_context(
|
||||
user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
|
||||
)
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
|
||||
|
||||
#
|
||||
# # Process each uploaded PDF file
|
||||
# results = []
|
||||
# for file in files:
|
||||
# contents = await file.read()
|
||||
# tmp_location = os.path.join('/tmp', "tmp.pdf")
|
||||
# with open(tmp_location, 'wb') as tmp_file:
|
||||
# tmp_file.write(contents)
|
||||
# loader = PyPDFLoader(tmp_location)
|
||||
# pages = loader.load_and_split()
|
||||
#
|
||||
# stm = ShortTermMemory(user_id=decoded_payload['user_id'])
|
||||
# stm.episodic_buffer.main_buffer(prompt=decoded_payload['prompt'], pages=pages)
|
||||
# # Here you can perform your processing on the PDF contents
|
||||
# results.append({"filename": file.filename, "size": len(contents)})
|
||||
#
|
||||
# return {"message": "Upload successful", "results": results}
|
||||
#
|
||||
# except Exception as e:
|
||||
# return {"error": str(e)}
|
||||
@app.post("/buffer/get-tasks", response_model=dict)
|
||||
async def create_context(
|
||||
payload: Payload,
|
||||
# files: List[UploadFile] = File(...),
|
||||
):
|
||||
try:
|
||||
decoded_payload = payload.payload
|
||||
|
||||
Memory_ = Memory(user_id=decoded_payload["user_id"])
|
||||
|
||||
# @app.post("/clear-cache", response_model=dict)
|
||||
# async def clear_cache(request_data: Payload) -> dict:
|
||||
# """
|
||||
# Endpoint to clear the cache.
|
||||
#
|
||||
# Parameters:
|
||||
# request_data (Payload): The request data containing the user and session IDs.
|
||||
#
|
||||
# Returns:
|
||||
# dict: A dictionary with a message indicating the cache was cleared.
|
||||
# """
|
||||
# json_payload = request_data.payload
|
||||
# agent = Agent()
|
||||
# agent.set_user_session(json_payload["user_id"], json_payload["session_id"])
|
||||
# try:
|
||||
# agent.clear_cache()
|
||||
# return JSONResponse(content={"response": "Cache cleared"}, status_code=200)
|
||||
# except Exception as e:
|
||||
# raise HTTPException(status_code=500, detail=str(e))
|
||||
#
|
||||
# @app.post("/correct-prompt-grammar", response_model=dict)
|
||||
# async def prompt_to_correct_grammar(request_data: Payload) -> dict:
|
||||
# json_payload = request_data.payload
|
||||
# agent = Agent()
|
||||
# agent.set_user_session(json_payload["user_id"], json_payload["session_id"])
|
||||
# logging.info("Correcting grammar %s", json_payload["prompt_source"])
|
||||
#
|
||||
# output = agent.prompt_correction(json_payload["prompt_source"], model_speed= json_payload["model_speed"])
|
||||
# return JSONResponse(content={"response": {"result": json.loads(output)}})
|
||||
|
||||
|
||||
# @app.post("/action-add-zapier-calendar-action", response_model=dict,dependencies=[Depends(auth)])
|
||||
# async def action_add_zapier_calendar_action(
|
||||
# request: Request, request_data: Payload
|
||||
# ) -> dict:
|
||||
# json_payload = request_data.payload
|
||||
# agent = Agent()
|
||||
# agent.set_user_session(json_payload["user_id"], json_payload["session_id"])
|
||||
# # Extract the bearer token from the header
|
||||
# auth_header = request.headers.get("Authorization")
|
||||
# if auth_header:
|
||||
# bearer_token = auth_header.replace("Bearer ", "")
|
||||
# else:
|
||||
# bearer_token = None
|
||||
# outcome = agent.add_zapier_calendar_action(
|
||||
# prompt_base=json_payload["prompt_base"],
|
||||
# token=bearer_token,
|
||||
# model_speed=json_payload["model_speed"],
|
||||
# )
|
||||
# return JSONResponse(content={"response": outcome})
|
||||
await Memory_.async_init()
|
||||
|
||||
# memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
|
||||
output = await Memory_._get_task_list(
|
||||
user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
|
||||
)
|
||||
return JSONResponse(content={"response": output}, status_code=200)
|
||||
|
||||
except Exception as e:
|
||||
return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
|
||||
|
||||
def start_api_server(host: str = "0.0.0.0", port: int = 8000):
|
||||
"""
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
Loading…
Add table
Reference in a new issue