chore: Remove old eval files [cog-1567] (#649)
<!-- .github/pull_request_template.md --> ## Description Removed old, unused eval files. - swe-bench eval files are kept here as swe-bench eval is not handled by the new eval framework - EC2_readme and cloud/setup_ubuntu_instance.sh will be removed (and moved to the docs website) as part of another task ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin
This commit is contained in:
parent
9b9fe48843
commit
219b68c6b0
17 changed files with 4 additions and 1366 deletions
|
|
@ -1,111 +0,0 @@
|
|||
from deepeval.metrics import BaseMetric, GEval
|
||||
from deepeval.test_case import LLMTestCase, LLMTestCaseParams
|
||||
|
||||
from evals.official_hotpot_metrics import exact_match_score, f1_score
|
||||
from cognee.infrastructure.llm.prompts.llm_judge_prompts import llm_judge_prompts
|
||||
|
||||
correctness_metric = GEval(
|
||||
name="Correctness",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[LLMTestCaseParams.ACTUAL_OUTPUT, LLMTestCaseParams.EXPECTED_OUTPUT],
|
||||
evaluation_steps=[llm_judge_prompts["correctness"]],
|
||||
)
|
||||
|
||||
comprehensiveness_metric = GEval(
|
||||
name="Comprehensiveness",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[
|
||||
LLMTestCaseParams.INPUT,
|
||||
LLMTestCaseParams.ACTUAL_OUTPUT,
|
||||
LLMTestCaseParams.EXPECTED_OUTPUT,
|
||||
],
|
||||
evaluation_steps=[llm_judge_prompts["comprehensiveness"]],
|
||||
)
|
||||
|
||||
diversity_metric = GEval(
|
||||
name="Diversity",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[
|
||||
LLMTestCaseParams.INPUT,
|
||||
LLMTestCaseParams.ACTUAL_OUTPUT,
|
||||
LLMTestCaseParams.EXPECTED_OUTPUT,
|
||||
],
|
||||
evaluation_steps=[llm_judge_prompts["diversity"]],
|
||||
)
|
||||
|
||||
empowerment_metric = GEval(
|
||||
name="Empowerment",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[
|
||||
LLMTestCaseParams.INPUT,
|
||||
LLMTestCaseParams.ACTUAL_OUTPUT,
|
||||
LLMTestCaseParams.EXPECTED_OUTPUT,
|
||||
],
|
||||
evaluation_steps=[llm_judge_prompts["empowerment"]],
|
||||
)
|
||||
|
||||
directness_metric = GEval(
|
||||
name="Directness",
|
||||
model="gpt-4o-mini",
|
||||
evaluation_params=[
|
||||
LLMTestCaseParams.INPUT,
|
||||
LLMTestCaseParams.ACTUAL_OUTPUT,
|
||||
LLMTestCaseParams.EXPECTED_OUTPUT,
|
||||
],
|
||||
evaluation_steps=[llm_judge_prompts["directness"]],
|
||||
)
|
||||
|
||||
|
||||
class f1_score_metric(BaseMetric):
|
||||
"""F1 score taken directly from the official hotpot benchmark
|
||||
implementation and wrapped into a deepeval metric."""
|
||||
|
||||
def __init__(self, threshold: float = 0.5):
|
||||
self.threshold = threshold
|
||||
|
||||
def measure(self, test_case: LLMTestCase):
|
||||
f1, precision, recall = f1_score(
|
||||
prediction=test_case.actual_output,
|
||||
ground_truth=test_case.expected_output,
|
||||
)
|
||||
self.score = f1
|
||||
self.success = self.score >= self.threshold
|
||||
return self.score
|
||||
|
||||
# Reusing regular measure as async F1 score is not implemented
|
||||
async def a_measure(self, test_case: LLMTestCase):
|
||||
return self.measure(test_case)
|
||||
|
||||
def is_successful(self):
|
||||
return self.success
|
||||
|
||||
@property
|
||||
def __name__(self):
|
||||
return "Official hotpot F1 score"
|
||||
|
||||
|
||||
class em_score_metric(BaseMetric):
|
||||
"""Exact Match score taken directly from the official hotpot benchmark
|
||||
implementation and wrapped into a deepeval metric."""
|
||||
|
||||
def __init__(self, threshold: float = 0.5):
|
||||
self.threshold = threshold
|
||||
|
||||
def measure(self, test_case: LLMTestCase):
|
||||
self.score = exact_match_score(
|
||||
prediction=test_case.actual_output,
|
||||
ground_truth=test_case.expected_output,
|
||||
)
|
||||
self.success = self.score >= self.threshold
|
||||
return self.score
|
||||
|
||||
# Reusing regular measure as async F1 score is not implemented
|
||||
async def a_measure(self, test_case: LLMTestCase):
|
||||
return self.measure(test_case)
|
||||
|
||||
def is_successful(self):
|
||||
return self.success
|
||||
|
||||
@property
|
||||
def __name__(self):
|
||||
return "Official hotpot EM score"
|
||||
|
|
@ -1,192 +0,0 @@
|
|||
import argparse
|
||||
import asyncio
|
||||
import statistics
|
||||
from deepeval.dataset import EvaluationDataset
|
||||
from deepeval.test_case import LLMTestCase
|
||||
from tqdm import tqdm
|
||||
import logging
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
|
||||
from evals.qa_dataset_utils import load_qa_dataset
|
||||
from evals.qa_metrics_utils import get_metrics
|
||||
from evals.qa_context_provider_utils import qa_context_providers, valid_pipeline_slices
|
||||
import random
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def answer_qa_instance(instance, context_provider, contexts_filename):
|
||||
if os.path.exists(contexts_filename):
|
||||
with open(contexts_filename, "r") as file:
|
||||
preloaded_contexts = json.load(file)
|
||||
else:
|
||||
preloaded_contexts = {}
|
||||
|
||||
if instance["_id"] in preloaded_contexts:
|
||||
context = preloaded_contexts[instance["_id"]]
|
||||
else:
|
||||
context = await context_provider(instance)
|
||||
preloaded_contexts[instance["_id"]] = context
|
||||
|
||||
with open(contexts_filename, "w") as file:
|
||||
json.dump(preloaded_contexts, file)
|
||||
|
||||
args = {
|
||||
"question": instance["question"],
|
||||
"context": context,
|
||||
}
|
||||
user_prompt = render_prompt("context_for_question.txt", args)
|
||||
system_prompt = read_query_prompt("answer_hotpot_using_cognee_search.txt")
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=user_prompt,
|
||||
system_prompt=system_prompt,
|
||||
response_model=str,
|
||||
)
|
||||
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def deepeval_answers(instances, answers, eval_metrics):
|
||||
test_cases = []
|
||||
|
||||
for instance, answer in zip(instances, answers):
|
||||
test_case = LLMTestCase(
|
||||
input=instance["question"], actual_output=answer, expected_output=instance["answer"]
|
||||
)
|
||||
test_cases.append(test_case)
|
||||
|
||||
eval_set = EvaluationDataset(test_cases)
|
||||
eval_results = eval_set.evaluate(eval_metrics)
|
||||
|
||||
return eval_results
|
||||
|
||||
|
||||
async def deepeval_on_instances(
|
||||
instances, context_provider, eval_metrics, answers_filename, contexts_filename
|
||||
):
|
||||
if os.path.exists(answers_filename):
|
||||
with open(answers_filename, "r") as file:
|
||||
preloaded_answers = json.load(file)
|
||||
else:
|
||||
preloaded_answers = {}
|
||||
|
||||
answers = []
|
||||
for instance in tqdm(instances, desc="Getting answers"):
|
||||
if instance["_id"] in preloaded_answers:
|
||||
answer = preloaded_answers[instance["_id"]]
|
||||
else:
|
||||
answer = await answer_qa_instance(instance, context_provider, contexts_filename)
|
||||
preloaded_answers[instance["_id"]] = answer
|
||||
answers.append(answer)
|
||||
|
||||
with open(answers_filename, "w") as file:
|
||||
json.dump(preloaded_answers, file)
|
||||
|
||||
eval_results = await deepeval_answers(instances, answers, eval_metrics)
|
||||
score_lists_dict = {}
|
||||
for instance_result in eval_results.test_results:
|
||||
for metric_result in instance_result.metrics_data:
|
||||
if metric_result.name not in score_lists_dict:
|
||||
score_lists_dict[metric_result.name] = []
|
||||
score_lists_dict[metric_result.name].append(metric_result.score)
|
||||
|
||||
avg_scores = {
|
||||
metric_name: statistics.mean(scorelist)
|
||||
for metric_name, scorelist in score_lists_dict.items()
|
||||
}
|
||||
|
||||
return avg_scores
|
||||
|
||||
|
||||
async def eval_on_QA_dataset(
|
||||
dataset_name_or_filename: str, context_provider_name, num_samples, metric_name_list, out_path
|
||||
):
|
||||
dataset = load_qa_dataset(dataset_name_or_filename)
|
||||
context_provider = qa_context_providers[context_provider_name]
|
||||
eval_metrics = get_metrics(metric_name_list)
|
||||
|
||||
out_path = Path(out_path)
|
||||
if not out_path.exists():
|
||||
out_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
random.seed(43)
|
||||
instances = dataset if not num_samples else random.sample(dataset, num_samples)
|
||||
|
||||
contexts_filename = out_path / Path(
|
||||
f"contexts_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
|
||||
)
|
||||
if "promptfoo_metrics" in eval_metrics:
|
||||
promptfoo_results = await eval_metrics["promptfoo_metrics"].measure(
|
||||
instances, context_provider, contexts_filename
|
||||
)
|
||||
else:
|
||||
promptfoo_results = {}
|
||||
|
||||
answers_filename = out_path / Path(
|
||||
f"answers_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
|
||||
)
|
||||
deepeval_results = await deepeval_on_instances(
|
||||
instances,
|
||||
context_provider,
|
||||
eval_metrics["deepeval_metrics"],
|
||||
answers_filename,
|
||||
contexts_filename,
|
||||
)
|
||||
|
||||
results = promptfoo_results | deepeval_results
|
||||
|
||||
return results
|
||||
|
||||
|
||||
async def incremental_eval_on_QA_dataset(
|
||||
dataset_name_or_filename: str, num_samples, metric_name_list, out_path
|
||||
):
|
||||
pipeline_slice_names = valid_pipeline_slices.keys()
|
||||
|
||||
incremental_results = {}
|
||||
for pipeline_slice_name in pipeline_slice_names:
|
||||
results = await eval_on_QA_dataset(
|
||||
dataset_name_or_filename, pipeline_slice_name, num_samples, metric_name_list, out_path
|
||||
)
|
||||
incremental_results[pipeline_slice_name] = results
|
||||
|
||||
return incremental_results
|
||||
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--dataset", type=str, required=True, help="Which dataset to evaluate on")
|
||||
parser.add_argument(
|
||||
"--rag_option",
|
||||
type=str,
|
||||
choices=list(qa_context_providers.keys()) + ["cognee_incremental"],
|
||||
required=True,
|
||||
help="RAG option to use for providing context",
|
||||
)
|
||||
parser.add_argument("--num_samples", type=int, default=500)
|
||||
parser.add_argument("--metrics", type=str, nargs="+", default=["Correctness"])
|
||||
parser.add_argument("--out_dir", type=str, help="Dir to save eval results")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rag_option == "cognee_incremental":
|
||||
avg_scores = await incremental_eval_on_QA_dataset(
|
||||
args.dataset, args.num_samples, args.metrics, args.out_dir
|
||||
)
|
||||
|
||||
else:
|
||||
avg_scores = await eval_on_QA_dataset(
|
||||
args.dataset, args.rag_option, args.num_samples, args.metrics, args.out_dir
|
||||
)
|
||||
|
||||
logger.info(f"{avg_scores}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
|
@ -82,9 +82,11 @@ async def generate_patch_with_cognee(instance):
|
|||
return answer_prediction
|
||||
|
||||
|
||||
async def generate_patch_without_cognee(instance, llm_client):
|
||||
async def generate_patch_without_cognee(instance):
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
|
||||
llm_client = get_llm_client()
|
||||
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=instance["text"],
|
||||
system_prompt=instructions,
|
||||
|
|
@ -128,7 +130,7 @@ async def main():
|
|||
|
||||
if args.cognee_off:
|
||||
dataset_name = "princeton-nlp/SWE-bench_Lite_bm25_13K"
|
||||
dataset = load_swebench_dataset(dataset_name, split="test")
|
||||
dataset = load_swebench_dataset(dataset_name, split="test")[:2]
|
||||
predictions_path = "preds_nocognee.json"
|
||||
if not Path(predictions_path).exists():
|
||||
preds = await get_preds(dataset, with_cognee=False)
|
||||
|
|
|
|||
|
|
@ -1,45 +0,0 @@
|
|||
from deepeval.dataset import EvaluationDataset
|
||||
from deepeval.synthesizer import Synthesizer
|
||||
import dotenv
|
||||
from deepeval.test_case import LLMTestCase
|
||||
|
||||
# import pytest
|
||||
# from deepeval import assert_test
|
||||
from deepeval.metrics import AnswerRelevancyMetric
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# synthesizer = Synthesizer()
|
||||
# synthesizer.generate_goldens_from_docs(
|
||||
# document_paths=['natural_language_processing.txt', 'soldiers_home.pdf', 'trump.txt'],
|
||||
# max_goldens_per_document=5,
|
||||
# num_evolutions=5,
|
||||
# include_expected_output=True,
|
||||
# enable_breadth_evolve=True,
|
||||
# )
|
||||
#
|
||||
# synthesizer.save_as(
|
||||
# file_type='json', # or 'csv'
|
||||
# directory="./synthetic_data"
|
||||
# )
|
||||
|
||||
|
||||
dataset = EvaluationDataset()
|
||||
dataset.generate_goldens_from_docs(
|
||||
document_paths=["natural_language_processing.txt", "soldiers_home.pdf", "trump.txt"],
|
||||
max_goldens_per_document=10,
|
||||
num_evolutions=5,
|
||||
enable_breadth_evolve=True,
|
||||
)
|
||||
|
||||
|
||||
print(dataset.goldens)
|
||||
print(dataset)
|
||||
|
||||
|
||||
answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.5)
|
||||
|
||||
# from deepeval import evaluate
|
||||
|
||||
|
||||
# evaluate(dataset, [answer_relevancy_metric])
|
||||
|
|
@ -1,75 +0,0 @@
|
|||
import subprocess
|
||||
import json
|
||||
import argparse
|
||||
import os
|
||||
from typing import List
|
||||
import sys
|
||||
|
||||
|
||||
def run_command(command: List[str]):
|
||||
try:
|
||||
process = subprocess.Popen(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1
|
||||
)
|
||||
|
||||
while True:
|
||||
stdout_line = process.stdout.readline()
|
||||
stderr_line = process.stderr.readline()
|
||||
|
||||
if stdout_line == "" and stderr_line == "" and process.poll() is not None:
|
||||
break
|
||||
|
||||
if stdout_line:
|
||||
print(stdout_line.rstrip())
|
||||
if stderr_line:
|
||||
print(f"Error: {stderr_line.rstrip()}", file=sys.stderr)
|
||||
|
||||
if process.returncode != 0:
|
||||
raise subprocess.CalledProcessError(process.returncode, command)
|
||||
finally:
|
||||
process.stdout.close()
|
||||
process.stderr.close()
|
||||
|
||||
|
||||
def run_evals_for_paramsfile(params_file, out_dir):
|
||||
with open(params_file, "r") as file:
|
||||
parameters = json.load(file)
|
||||
|
||||
for metric in parameters["metric_names"]:
|
||||
params = parameters
|
||||
params["metric_names"] = [metric]
|
||||
|
||||
temp_paramfile = params_file.replace(".json", f"_{metric}.json")
|
||||
with open(temp_paramfile, "w") as file:
|
||||
json.dump(params, file)
|
||||
|
||||
command = [
|
||||
"python",
|
||||
"evals/run_qa_eval.py",
|
||||
"--params_file",
|
||||
temp_paramfile,
|
||||
"--out_dir",
|
||||
out_dir,
|
||||
]
|
||||
|
||||
run_command(command)
|
||||
|
||||
if os.path.exists(temp_paramfile):
|
||||
os.remove(temp_paramfile)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--params_file", type=str, required=True, help="Which dataset to evaluate on"
|
||||
)
|
||||
parser.add_argument("--out_dir", type=str, help="Dir to save eval results")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
run_evals_for_paramsfile(args.params_file, args.out_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -1,90 +0,0 @@
|
|||
"""
|
||||
These are the official evaluation metrics for HotpotQA taken from https://hotpotqa.github.io/
|
||||
"""
|
||||
|
||||
import re
|
||||
import string
|
||||
from collections import Counter
|
||||
|
||||
|
||||
def normalize_answer(s):
|
||||
def remove_articles(text):
|
||||
return re.sub(r"\b(a|an|the)\b", " ", text)
|
||||
|
||||
def white_space_fix(text):
|
||||
return " ".join(text.split())
|
||||
|
||||
def remove_punc(text):
|
||||
exclude = set(string.punctuation)
|
||||
return "".join(ch for ch in text if ch not in exclude)
|
||||
|
||||
def lower(text):
|
||||
return text.lower()
|
||||
|
||||
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
||||
|
||||
|
||||
def f1_score(prediction, ground_truth):
|
||||
normalized_prediction = normalize_answer(prediction)
|
||||
normalized_ground_truth = normalize_answer(ground_truth)
|
||||
|
||||
ZERO_METRIC = (0, 0, 0)
|
||||
|
||||
if (
|
||||
normalized_prediction in ["yes", "no", "noanswer"]
|
||||
and normalized_prediction != normalized_ground_truth
|
||||
):
|
||||
return ZERO_METRIC
|
||||
if (
|
||||
normalized_ground_truth in ["yes", "no", "noanswer"]
|
||||
and normalized_prediction != normalized_ground_truth
|
||||
):
|
||||
return ZERO_METRIC
|
||||
|
||||
prediction_tokens = normalized_prediction.split()
|
||||
ground_truth_tokens = normalized_ground_truth.split()
|
||||
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
||||
num_same = sum(common.values())
|
||||
if num_same == 0:
|
||||
return ZERO_METRIC
|
||||
precision = 1.0 * num_same / len(prediction_tokens)
|
||||
recall = 1.0 * num_same / len(ground_truth_tokens)
|
||||
f1 = (2 * precision * recall) / (precision + recall)
|
||||
return f1, precision, recall
|
||||
|
||||
|
||||
def exact_match_score(prediction, ground_truth):
|
||||
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
||||
|
||||
|
||||
def update_answer(metrics, prediction, gold):
|
||||
em = exact_match_score(prediction, gold)
|
||||
f1, prec, recall = f1_score(prediction, gold)
|
||||
metrics["em"] += float(em)
|
||||
metrics["f1"] += f1
|
||||
metrics["prec"] += prec
|
||||
metrics["recall"] += recall
|
||||
return em, prec, recall
|
||||
|
||||
|
||||
def update_sp(metrics, prediction, gold):
|
||||
cur_sp_pred = set(map(tuple, prediction))
|
||||
gold_sp_pred = set(map(tuple, gold))
|
||||
tp, fp, fn = 0, 0, 0
|
||||
for e in cur_sp_pred:
|
||||
if e in gold_sp_pred:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
for e in gold_sp_pred:
|
||||
if e not in cur_sp_pred:
|
||||
fn += 1
|
||||
prec = 1.0 * tp / (tp + fp) if tp + fp > 0 else 0.0
|
||||
recall = 1.0 * tp / (tp + fn) if tp + fn > 0 else 0.0
|
||||
f1 = 2 * prec * recall / (prec + recall) if prec + recall > 0 else 0.0
|
||||
em = 1.0 if fp + fn == 0 else 0.0
|
||||
metrics["sp_em"] += em
|
||||
metrics["sp_f1"] += f1
|
||||
metrics["sp_prec"] += prec
|
||||
metrics["sp_recall"] += recall
|
||||
return em, prec, recall
|
||||
|
|
@ -1,7 +0,0 @@
|
|||
# yaml-language-server: $schema=https://promptfoo.dev/config-schema.json
|
||||
|
||||
# Learn more about building a configuration: https://promptfoo.dev/docs/configuration/guide
|
||||
|
||||
description: "My eval"
|
||||
providers:
|
||||
- id: openai:gpt-4o-mini
|
||||
|
|
@ -1,92 +0,0 @@
|
|||
from evals.promptfoo_wrapper import PromptfooWrapper
|
||||
import os
|
||||
import yaml
|
||||
import json
|
||||
import shutil
|
||||
from cognee.infrastructure.llm.prompts.llm_judge_prompts import llm_judge_prompts
|
||||
|
||||
|
||||
def is_valid_promptfoo_metric(metric_name: str):
|
||||
try:
|
||||
prefix, suffix = metric_name.split(".")
|
||||
except ValueError:
|
||||
return False
|
||||
if prefix != "promptfoo":
|
||||
return False
|
||||
if suffix not in llm_judge_prompts:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class PromptfooMetric:
|
||||
def __init__(self, metric_name_list):
|
||||
promptfoo_path = shutil.which("promptfoo")
|
||||
self.wrapper = PromptfooWrapper(promptfoo_path=promptfoo_path)
|
||||
self.prompts = {}
|
||||
for metric_name in metric_name_list:
|
||||
if is_valid_promptfoo_metric(metric_name):
|
||||
self.prompts[metric_name] = llm_judge_prompts[metric_name.split(".")[1]]
|
||||
else:
|
||||
raise Exception(f"{metric_name} is not a valid promptfoo metric")
|
||||
|
||||
async def measure(self, instances, context_provider, contexts_filename):
|
||||
with open(os.path.join(os.getcwd(), "evals/promptfoo_config_template.yaml"), "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
config["defaultTest"] = {
|
||||
"assert": [
|
||||
{"type": "llm-rubric", "value": prompt, "name": metric_name}
|
||||
for metric_name, prompt in self.prompts.items()
|
||||
]
|
||||
}
|
||||
|
||||
tests = []
|
||||
if os.path.exists(contexts_filename):
|
||||
with open(contexts_filename, "r") as file:
|
||||
preloaded_contexts = json.load(file)
|
||||
else:
|
||||
preloaded_contexts = {}
|
||||
|
||||
for instance in instances:
|
||||
if instance["_id"] in preloaded_contexts:
|
||||
context = preloaded_contexts[instance["_id"]]
|
||||
else:
|
||||
context = await context_provider(instance)
|
||||
preloaded_contexts[instance["_id"]] = context
|
||||
|
||||
test = {
|
||||
"vars": {
|
||||
"name": instance["question"][:15],
|
||||
"question": instance["question"],
|
||||
"context": context,
|
||||
}
|
||||
}
|
||||
tests.append(test)
|
||||
|
||||
config["tests"] = tests
|
||||
with open(contexts_filename, "w") as file:
|
||||
json.dump(preloaded_contexts, file)
|
||||
|
||||
# Write the updated YAML back, preserving formatting and structure
|
||||
updated_yaml_file_path = os.path.join(os.getcwd(), "config_with_context.yaml")
|
||||
with open(updated_yaml_file_path, "w") as file:
|
||||
yaml.dump(config, file)
|
||||
|
||||
self.wrapper.run_eval(
|
||||
prompt_file=os.path.join(os.getcwd(), "evals/promptfooprompt.json"),
|
||||
config_file=os.path.join(os.getcwd(), "config_with_context.yaml"),
|
||||
out_format="json",
|
||||
)
|
||||
|
||||
file_path = os.path.join(os.getcwd(), "benchmark_results.json")
|
||||
|
||||
# Read and parse the JSON file
|
||||
with open(file_path, "r") as file:
|
||||
results = json.load(file)
|
||||
|
||||
scores = {}
|
||||
|
||||
for result in results["results"]["results"][0]["gradingResult"]["componentResults"]:
|
||||
scores[result["assertion"]["name"]] = result["score"]
|
||||
|
||||
return scores
|
||||
|
|
@ -1,157 +0,0 @@
|
|||
import subprocess
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import List, Optional, Dict, Generator
|
||||
import shutil
|
||||
import platform
|
||||
from dotenv import load_dotenv
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class PromptfooWrapper:
|
||||
"""
|
||||
A Python wrapper class around the promptfoo CLI tool, allowing you to:
|
||||
- Evaluate prompts against different language models.
|
||||
- Compare responses from multiple models.
|
||||
- Pass configuration and prompt files.
|
||||
- Retrieve the outputs in a structured format, including binary output if needed.
|
||||
|
||||
This class assumes you have the promptfoo CLI installed and accessible in your environment.
|
||||
For more details on promptfoo, see: https://github.com/promptfoo/promptfoo
|
||||
"""
|
||||
|
||||
def __init__(self, promptfoo_path: str = ""):
|
||||
"""
|
||||
Initialize the wrapper with the path to the promptfoo executable.
|
||||
|
||||
:param promptfoo_path: Path to the promptfoo binary (default: 'promptfoo')
|
||||
"""
|
||||
self.promptfoo_path = promptfoo_path
|
||||
logger.debug(f"Initialized PromptfooWrapper with binary at: {self.promptfoo_path}")
|
||||
|
||||
def _validate_path(self, file_path: Optional[str]) -> None:
|
||||
"""
|
||||
Validate that a file path is accessible if provided.
|
||||
Raise FileNotFoundError if it does not exist.
|
||||
"""
|
||||
if file_path and not os.path.isfile(file_path):
|
||||
logger.error(f"File not found: {file_path}")
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
def _get_node_bin_dir(self) -> str:
|
||||
"""
|
||||
Determine the Node.js binary directory dynamically for macOS and Linux.
|
||||
"""
|
||||
node_executable = shutil.which("node")
|
||||
if not node_executable:
|
||||
logger.error("Node.js is not installed or not found in the system PATH.")
|
||||
raise EnvironmentError("Node.js is not installed or not in PATH.")
|
||||
|
||||
# Determine the Node.js binary directory
|
||||
node_bin_dir = os.path.dirname(node_executable)
|
||||
|
||||
# Special handling for macOS, where Homebrew installs Node in /usr/local or /opt/homebrew
|
||||
if platform.system() == "Darwin": # macOS
|
||||
logger.debug("Running on macOS")
|
||||
brew_prefix = os.popen("brew --prefix node").read().strip()
|
||||
if brew_prefix and os.path.exists(brew_prefix):
|
||||
node_bin_dir = os.path.join(brew_prefix, "bin")
|
||||
logger.debug(f"Detected Node.js binary directory using Homebrew: {node_bin_dir}")
|
||||
|
||||
# For Linux, Node.js installed via package managers should work out of the box
|
||||
logger.debug(f"Detected Node.js binary directory: {node_bin_dir}")
|
||||
return node_bin_dir
|
||||
|
||||
def _run_command(
|
||||
self,
|
||||
cmd: List[str],
|
||||
filename,
|
||||
) -> Generator[Dict, None, None]:
|
||||
"""
|
||||
Run a given command using subprocess and parse the output.
|
||||
"""
|
||||
logger.debug(f"Running command: {' '.join(cmd)}")
|
||||
|
||||
# Make a copy of the current environment
|
||||
env = os.environ.copy()
|
||||
|
||||
try:
|
||||
node_bin_dir = self._get_node_bin_dir()
|
||||
print(node_bin_dir)
|
||||
env["PATH"] = f"{node_bin_dir}:{env['PATH']}"
|
||||
|
||||
except EnvironmentError as e:
|
||||
logger.error(f"Failed to set Node.js binary directory: {e}")
|
||||
raise
|
||||
|
||||
# Add node's bin directory to the PATH
|
||||
# node_bin_dir = "/Users/vasilije/Library/Application Support/JetBrains/PyCharm2024.2/node/versions/20.15.0/bin"
|
||||
# # env["PATH"] = f"{node_bin_dir}:{env['PATH']}"
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, check=False, env=env)
|
||||
|
||||
print(result.stderr)
|
||||
with open(filename, "r", encoding="utf-8") as file:
|
||||
read_data = json.load(file)
|
||||
print(f"{filename} created and written.")
|
||||
|
||||
# Log raw stdout for debugging
|
||||
logger.debug(f"Raw command output:\n{result.stdout}")
|
||||
|
||||
# Use the parse_promptfoo_output function to yield parsed results
|
||||
return read_data
|
||||
|
||||
def run_eval(
|
||||
self,
|
||||
prompt_file: Optional[str] = None,
|
||||
config_file: Optional[str] = None,
|
||||
eval_file: Optional[str] = None,
|
||||
out_format: str = "json",
|
||||
extra_args: Optional[List[str]] = None,
|
||||
binary_output: bool = False,
|
||||
) -> Dict:
|
||||
"""
|
||||
Run the `promptfoo eval` command with the provided parameters and return parsed results.
|
||||
|
||||
:param prompt_file: Path to a file containing one or more prompts.
|
||||
:param config_file: Path to a config file specifying models, scoring methods, etc.
|
||||
:param eval_file: Path to an eval file with test data.
|
||||
:param out_format: Output format, e.g., 'json', 'yaml', or 'table'.
|
||||
:param extra_args: Additional command-line arguments for fine-tuning evaluation.
|
||||
:param binary_output: If True, interpret output as binary data instead of text.
|
||||
:return: List of parsed results (each result is a dictionary).
|
||||
"""
|
||||
self._validate_path(prompt_file)
|
||||
self._validate_path(config_file)
|
||||
self._validate_path(eval_file)
|
||||
|
||||
filename = "benchmark_results"
|
||||
|
||||
filename = os.path.join(os.getcwd(), f"{filename}.json")
|
||||
# Create an empty JSON file
|
||||
with open(filename, "w") as file:
|
||||
json.dump({}, file)
|
||||
|
||||
cmd = [self.promptfoo_path, "eval"]
|
||||
if prompt_file:
|
||||
cmd.extend(["--prompts", prompt_file])
|
||||
if config_file:
|
||||
cmd.extend(["--config", config_file])
|
||||
if eval_file:
|
||||
cmd.extend(["--eval", eval_file])
|
||||
cmd.extend(["--output", filename])
|
||||
if extra_args:
|
||||
cmd.extend(extra_args)
|
||||
|
||||
# Log the constructed command for debugging
|
||||
logger.debug(f"Constructed command: {' '.join(cmd)}")
|
||||
|
||||
# Collect results from the generator
|
||||
results = self._run_command(cmd, filename=filename)
|
||||
logger.debug(f"Parsed results: {json.dumps(results, indent=4)}")
|
||||
return results
|
||||
|
|
@ -1,10 +0,0 @@
|
|||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Answer the question using the provided context. Be as brief as possible."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "The question is: `{{ question }}` \n And here is the context: `{{ context }}`"
|
||||
}
|
||||
]
|
||||
|
|
@ -1,152 +0,0 @@
|
|||
import cognee
|
||||
from cognee.modules.search.types import SearchType
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.modules.retrieval.utils.brute_force_triplet_search import brute_force_triplet_search
|
||||
from cognee.modules.retrieval.graph_completion_retriever import GraphCompletionRetriever
|
||||
from functools import partial
|
||||
from cognee.api.v1.cognify.cognify_v2 import get_default_tasks
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_raw_context(instance: dict) -> str:
|
||||
return instance["context"]
|
||||
|
||||
|
||||
async def cognify_instance(instance: dict, task_indices: list[int] = None):
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
for title, sentences in instance["context"]:
|
||||
await cognee.add("\n".join(sentences), dataset_name="QA")
|
||||
all_cognify_tasks = await get_default_tasks()
|
||||
if task_indices:
|
||||
selected_tasks = [all_cognify_tasks[ind] for ind in task_indices]
|
||||
else:
|
||||
selected_tasks = all_cognify_tasks
|
||||
await cognee.cognify("QA", tasks=selected_tasks)
|
||||
|
||||
|
||||
def _insight_to_string(triplet: tuple) -> str:
|
||||
if not (isinstance(triplet, tuple) and len(triplet) == 3):
|
||||
logger.warning("Invalid input: Expected a tuple of length 3.")
|
||||
return ""
|
||||
|
||||
node1, edge, node2 = triplet
|
||||
|
||||
if not (isinstance(node1, dict) and isinstance(edge, dict) and isinstance(node2, dict)):
|
||||
logger.warning("Invalid input: Each element in the tuple must be a dictionary.")
|
||||
return ""
|
||||
|
||||
node1_name = node1["name"] if "name" in node1 else "N/A"
|
||||
node1_description = (
|
||||
node1["description"]
|
||||
if "description" in node1
|
||||
else node1["text"]
|
||||
if "text" in node1
|
||||
else "N/A"
|
||||
)
|
||||
node1_string = f"name: {node1_name}, description: {node1_description}"
|
||||
node2_name = node2["name"] if "name" in node2 else "N/A"
|
||||
node2_description = (
|
||||
node2["description"]
|
||||
if "description" in node2
|
||||
else node2["text"]
|
||||
if "text" in node2
|
||||
else "N/A"
|
||||
)
|
||||
node2_string = f"name: {node2_name}, description: {node2_description}"
|
||||
|
||||
edge_string = edge.get("relationship_name", "")
|
||||
|
||||
if not edge_string:
|
||||
logger.warning("Missing required field: 'relationship_name' in edge dictionary.")
|
||||
return ""
|
||||
|
||||
triplet_str = f"{node1_string} -- {edge_string} -- {node2_string}"
|
||||
return triplet_str
|
||||
|
||||
|
||||
async def get_context_with_cognee(
|
||||
instance: dict,
|
||||
task_indices: list[int] = None,
|
||||
search_types: list[SearchType] = [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
||||
) -> str:
|
||||
await cognify_instance(instance, task_indices)
|
||||
|
||||
search_results = []
|
||||
for search_type in search_types:
|
||||
raw_search_results = await cognee.search(
|
||||
query_type=search_type, query_text=instance["question"]
|
||||
)
|
||||
|
||||
if search_type == SearchType.INSIGHTS:
|
||||
res_list = [_insight_to_string(edge) for edge in raw_search_results]
|
||||
else:
|
||||
res_list = [
|
||||
context_item.get("text", "")
|
||||
for context_item in raw_search_results
|
||||
if isinstance(context_item, dict)
|
||||
]
|
||||
if all(not text for text in res_list):
|
||||
logger.warning(
|
||||
"res_list contains only empty strings: No valid 'text' entries found in raw_search_results."
|
||||
)
|
||||
|
||||
search_results += res_list
|
||||
|
||||
search_results_str = "\n".join(search_results)
|
||||
|
||||
return search_results_str
|
||||
|
||||
|
||||
def create_cognee_context_getter(
|
||||
task_indices=None, search_types=[SearchType.SUMMARIES, SearchType.CHUNKS]
|
||||
):
|
||||
return partial(get_context_with_cognee, task_indices=task_indices, search_types=search_types)
|
||||
|
||||
|
||||
async def get_context_with_simple_rag(instance: dict) -> str:
|
||||
await cognify_instance(instance)
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
found_chunks = await vector_engine.search("DocumentChunk_text", instance["question"], limit=5)
|
||||
|
||||
search_results_str = "\n".join([context_item.payload["text"] for context_item in found_chunks])
|
||||
|
||||
return search_results_str
|
||||
|
||||
|
||||
async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
|
||||
await cognify_instance(instance)
|
||||
|
||||
found_triplets = await brute_force_triplet_search(instance["question"], top_k=5)
|
||||
|
||||
retriever = GraphCompletionRetriever()
|
||||
search_results_str = await retriever.resolve_edges_to_text(found_triplets)
|
||||
|
||||
return search_results_str
|
||||
|
||||
|
||||
valid_pipeline_slices = {
|
||||
"extract_graph": {
|
||||
"slice": [0, 1, 2, 3, 5],
|
||||
"search_types": [SearchType.INSIGHTS, SearchType.CHUNKS],
|
||||
},
|
||||
"summarize": {
|
||||
"slice": [0, 1, 2, 3, 4, 5],
|
||||
"search_types": [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
||||
},
|
||||
}
|
||||
|
||||
qa_context_providers = {
|
||||
"no_rag": get_raw_context,
|
||||
"cognee": get_context_with_cognee,
|
||||
"simple_rag": get_context_with_simple_rag,
|
||||
"brute_force": get_context_with_brute_force_triplet_search,
|
||||
} | {
|
||||
name: create_cognee_context_getter(
|
||||
task_indices=value["slice"], search_types=value["search_types"]
|
||||
)
|
||||
for name, value in valid_pipeline_slices.items()
|
||||
}
|
||||
|
|
@ -1,82 +0,0 @@
|
|||
from cognee.root_dir import get_absolute_path
|
||||
import json
|
||||
import requests
|
||||
from jsonschema import ValidationError, validate
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
qa_datasets = {
|
||||
"hotpotqa": {
|
||||
"filename": "hotpot_dev_fullwiki_v1.json",
|
||||
"URL": "http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json",
|
||||
},
|
||||
"2wikimultihop": {
|
||||
"filename": "data/dev.json",
|
||||
"URL": "https://www.dropbox.com/scl/fi/heid2pkiswhfaqr5g0piw/data.zip?rlkey=ira57daau8lxfj022xvk1irju&e=1",
|
||||
},
|
||||
}
|
||||
|
||||
qa_json_schema = {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"answer": {"type": "string"},
|
||||
"question": {"type": "string"},
|
||||
"context": {"type": "array"},
|
||||
},
|
||||
"required": ["answer", "question", "context"],
|
||||
"additionalProperties": True,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def download_qa_dataset(dataset_name: str, filepath: Path):
|
||||
if dataset_name not in qa_datasets:
|
||||
raise ValueError(f"{dataset_name} is not a supported dataset.")
|
||||
|
||||
url = qa_datasets[dataset_name]["URL"]
|
||||
|
||||
if dataset_name == "2wikimultihop":
|
||||
raise Exception(
|
||||
"Please download 2wikimultihop dataset (data.zip) manually from \
|
||||
https://www.dropbox.com/scl/fi/heid2pkiswhfaqr5g0piw/data.zip?rlkey=ira57daau8lxfj022xvk1irju&e=1 \
|
||||
and unzip it."
|
||||
)
|
||||
|
||||
response = requests.get(url, stream=True)
|
||||
|
||||
if response.status_code == 200:
|
||||
with open(filepath, "wb") as file:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
file.write(chunk)
|
||||
print(f"Dataset {dataset_name} downloaded and saved to {filepath}")
|
||||
else:
|
||||
print(f"Failed to download {dataset_name}. Status code: {response.status_code}")
|
||||
|
||||
|
||||
def load_qa_dataset(dataset_name_or_filename: str) -> list[dict]:
|
||||
if dataset_name_or_filename in qa_datasets:
|
||||
dataset_name = dataset_name_or_filename
|
||||
filename = qa_datasets[dataset_name]["filename"]
|
||||
|
||||
data_root_dir = get_absolute_path("../.data")
|
||||
if not Path(data_root_dir).exists():
|
||||
Path(data_root_dir).mkdir()
|
||||
|
||||
filepath = data_root_dir / Path(filename)
|
||||
if not filepath.exists():
|
||||
download_qa_dataset(dataset_name, filepath)
|
||||
else:
|
||||
filename = dataset_name_or_filename
|
||||
filepath = Path(filename)
|
||||
|
||||
with open(filepath, "r") as file:
|
||||
dataset = json.load(file)
|
||||
|
||||
try:
|
||||
validate(instance=dataset, schema=qa_json_schema)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(f"Invalid QA dataset: {e.message}")
|
||||
|
||||
return dataset
|
||||
|
|
@ -1,18 +0,0 @@
|
|||
{
|
||||
"dataset": [
|
||||
"hotpotqa"
|
||||
],
|
||||
"rag_option": [
|
||||
"cognee_incremental",
|
||||
"no_rag",
|
||||
"simple_rag",
|
||||
"brute_force"
|
||||
],
|
||||
"num_samples": [
|
||||
2
|
||||
],
|
||||
"metric_names": [
|
||||
"Correctness",
|
||||
"Comprehensiveness"
|
||||
]
|
||||
}
|
||||
|
|
@ -1,65 +0,0 @@
|
|||
import itertools
|
||||
import matplotlib.pyplot as plt
|
||||
from jsonschema import ValidationError, validate
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
|
||||
paramset_json_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"dataset": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
},
|
||||
"rag_option": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
},
|
||||
"num_samples": {
|
||||
"type": "array",
|
||||
"items": {"type": "integer", "minimum": 1},
|
||||
},
|
||||
"metric_names": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
},
|
||||
},
|
||||
"required": ["dataset", "rag_option", "num_samples", "metric_names"],
|
||||
"additionalProperties": False,
|
||||
}
|
||||
|
||||
|
||||
def save_table_as_image(df, image_path):
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.axis("tight")
|
||||
plt.axis("off")
|
||||
plt.table(cellText=df.values, colLabels=df.columns, rowLabels=df.index, loc="center")
|
||||
plt.title(f"{df.index.name}")
|
||||
plt.savefig(image_path, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def save_results_as_image(results, out_path):
|
||||
for dataset, num_samples_data in results.items():
|
||||
for num_samples, table_data in num_samples_data.items():
|
||||
for rag_option, metric_data in table_data.items():
|
||||
for name, value in metric_data.items():
|
||||
metric_name = name
|
||||
break
|
||||
df = pd.DataFrame.from_dict(table_data, orient="index")
|
||||
df.index.name = f"Dataset: {dataset}, Num Samples: {num_samples}"
|
||||
image_path = out_path / Path(f"table_{dataset}_{num_samples}_{metric_name}.png")
|
||||
save_table_as_image(df, image_path)
|
||||
|
||||
|
||||
def get_combinations(parameters):
|
||||
try:
|
||||
validate(instance=parameters, schema=paramset_json_schema)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(f"Invalid parameter set: {e.message}")
|
||||
|
||||
# params_for_combos = {k: v for k, v in parameters.items() if k != "metric_name"}
|
||||
params_for_combos = {k: v for k, v in parameters.items()}
|
||||
keys, values = zip(*params_for_combos.items())
|
||||
combinations = [dict(zip(keys, combo)) for combo in itertools.product(*values)]
|
||||
return combinations
|
||||
|
|
@ -1,66 +0,0 @@
|
|||
from evals.deepeval_metrics import (
|
||||
correctness_metric,
|
||||
comprehensiveness_metric,
|
||||
diversity_metric,
|
||||
empowerment_metric,
|
||||
directness_metric,
|
||||
f1_score_metric,
|
||||
em_score_metric,
|
||||
)
|
||||
from deepeval.metrics import AnswerRelevancyMetric
|
||||
import deepeval.metrics
|
||||
from evals.promptfoo_metrics import is_valid_promptfoo_metric, PromptfooMetric
|
||||
|
||||
native_deepeval_metrics = {"AnswerRelevancy": AnswerRelevancyMetric}
|
||||
|
||||
custom_deepeval_metrics = {
|
||||
"Correctness": correctness_metric,
|
||||
"Comprehensiveness": comprehensiveness_metric,
|
||||
"Diversity": diversity_metric,
|
||||
"Empowerment": empowerment_metric,
|
||||
"Directness": directness_metric,
|
||||
"F1": f1_score_metric,
|
||||
"EM": em_score_metric,
|
||||
}
|
||||
|
||||
qa_metrics = native_deepeval_metrics | custom_deepeval_metrics
|
||||
|
||||
|
||||
def get_deepeval_metric(metric_name: str):
|
||||
if metric_name in qa_metrics:
|
||||
metric = qa_metrics[metric_name]
|
||||
else:
|
||||
try:
|
||||
metric_cls = getattr(deepeval.metrics, metric_name)
|
||||
metric = metric_cls()
|
||||
except AttributeError:
|
||||
raise Exception(f"Metric {metric_name} not supported")
|
||||
|
||||
if isinstance(metric, type):
|
||||
metric = metric()
|
||||
|
||||
return metric
|
||||
|
||||
|
||||
def get_metrics(metric_name_list: list[str]):
|
||||
metrics = {
|
||||
"deepeval_metrics": [],
|
||||
}
|
||||
|
||||
promptfoo_metric_names = []
|
||||
|
||||
for metric_name in metric_name_list:
|
||||
if (
|
||||
(metric_name in native_deepeval_metrics)
|
||||
or (metric_name in custom_deepeval_metrics)
|
||||
or hasattr(deepeval.metrics, metric_name)
|
||||
):
|
||||
metric = get_deepeval_metric(metric_name)
|
||||
metrics["deepeval_metrics"].append(metric)
|
||||
elif is_valid_promptfoo_metric(metric_name):
|
||||
promptfoo_metric_names.append(metric_name)
|
||||
|
||||
if len(promptfoo_metric_names) > 0:
|
||||
metrics["promptfoo_metrics"] = PromptfooMetric(promptfoo_metric_names)
|
||||
|
||||
return metrics
|
||||
|
|
@ -1,59 +0,0 @@
|
|||
import asyncio
|
||||
from evals.eval_on_hotpot import eval_on_QA_dataset, incremental_eval_on_QA_dataset
|
||||
from evals.qa_eval_utils import get_combinations, save_results_as_image
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
|
||||
async def run_evals_on_paramset(paramset: dict, out_path: str):
|
||||
combinations = get_combinations(paramset)
|
||||
json_path = Path(out_path) / Path("results.json")
|
||||
results = {}
|
||||
for params in combinations:
|
||||
dataset = params["dataset"]
|
||||
num_samples = params["num_samples"]
|
||||
rag_option = params["rag_option"]
|
||||
|
||||
if dataset not in results:
|
||||
results[dataset] = {}
|
||||
if num_samples not in results[dataset]:
|
||||
results[dataset][num_samples] = {}
|
||||
|
||||
if rag_option == "cognee_incremental":
|
||||
result = await incremental_eval_on_QA_dataset(
|
||||
dataset, num_samples, paramset["metric_names"], out_path
|
||||
)
|
||||
results[dataset][num_samples] |= result
|
||||
else:
|
||||
result = await eval_on_QA_dataset(
|
||||
dataset, rag_option, num_samples, paramset["metric_names"], out_path
|
||||
)
|
||||
results[dataset][num_samples][rag_option] = result
|
||||
|
||||
with open(json_path, "w") as file:
|
||||
json.dump(results, file, indent=1)
|
||||
|
||||
save_results_as_image(results, out_path)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--params_file", type=str, required=True, help="Which dataset to evaluate on"
|
||||
)
|
||||
parser.add_argument("--out_dir", type=str, help="Dir to save eval results")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.params_file, "r") as file:
|
||||
parameters = json.load(file)
|
||||
|
||||
await run_evals_on_paramset(parameters, args.out_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
|
@ -1,143 +0,0 @@
|
|||
from deepeval.dataset import EvaluationDataset
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
|
||||
from typing import List, Type
|
||||
from deepeval.test_case import LLMTestCase
|
||||
import dotenv
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.base_config import get_base_config
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
dataset = EvaluationDataset()
|
||||
dataset.add_test_cases_from_json_file(
|
||||
# file_path is the absolute path to you .json file
|
||||
file_path="./synthetic_data/20240519_185842.json",
|
||||
input_key_name="input",
|
||||
actual_output_key_name="actual_output",
|
||||
expected_output_key_name="expected_output",
|
||||
context_key_name="context",
|
||||
)
|
||||
|
||||
print(dataset)
|
||||
# from deepeval.synthesizer import Synthesizer
|
||||
#
|
||||
# synthesizer = Synthesizer(model="gpt-3.5-turbo")
|
||||
#
|
||||
# dataset = EvaluationDataset()
|
||||
# dataset.generate_goldens_from_docs(
|
||||
# synthesizer=synthesizer,
|
||||
# document_paths=['natural_language_processing.txt', 'soldiers_home.pdf', 'trump.txt'],
|
||||
# max_goldens_per_document=10,
|
||||
# num_evolutions=5,
|
||||
# enable_breadth_evolve=True,
|
||||
# )
|
||||
|
||||
|
||||
print(dataset.goldens)
|
||||
print(dataset)
|
||||
|
||||
|
||||
class AnswerModel(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
def get_answer_base(content: str, context: str, response_model: Type[BaseModel]):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
|
||||
|
||||
return llm_client.create_structured_output(content, system_prompt, response_model)
|
||||
|
||||
|
||||
def get_answer(content: str, context, model: Type[BaseModel] = AnswerModel):
|
||||
try:
|
||||
return get_answer_base(content, context, model)
|
||||
except Exception as error:
|
||||
logger.error("Error extracting cognitive layers from content: %s", error, exc_info=True)
|
||||
raise error
|
||||
|
||||
|
||||
async def run_cognify_base_rag():
|
||||
from cognee.api.v1.add import add
|
||||
from cognee.api.v1.prune import prune
|
||||
from cognee.api.v1.cognify.cognify import cognify
|
||||
|
||||
await prune.prune_system()
|
||||
|
||||
await add("data://test_datasets", "initial_test")
|
||||
|
||||
graph = await cognify("initial_test")
|
||||
return graph
|
||||
|
||||
|
||||
async def cognify_search_base_rag(content: str, context: str):
|
||||
base_config = get_base_config()
|
||||
|
||||
cognee_directory_path = os.path.abspath(".cognee_system")
|
||||
base_config.system_root_directory = cognee_directory_path
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
return_ = await vector_engine.search(collection_name="basic_rag", query_text=content, limit=10)
|
||||
|
||||
print("results", return_)
|
||||
return return_
|
||||
|
||||
|
||||
async def cognify_search_graph(content: str, context: str):
|
||||
from cognee.api.v1.search import search, SearchType
|
||||
|
||||
results = await search(query_type=SearchType.INSIGHTS, query_text="Donald Trump")
|
||||
print("results", results)
|
||||
return results
|
||||
|
||||
|
||||
def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
|
||||
test_cases = []
|
||||
for case in test_cases_raw:
|
||||
test_case = LLMTestCase(
|
||||
input=case.input,
|
||||
# Generate actual output using the 'input' and 'additional_metadata'
|
||||
actual_output=str(get_answer(case.input, case.context).model_dump()["response"]),
|
||||
expected_output=case.expected_output,
|
||||
context=case.context,
|
||||
retrieval_context=["retrieval_context"],
|
||||
)
|
||||
test_cases.append(test_case)
|
||||
return test_cases
|
||||
|
||||
|
||||
# # Data preprocessing before setting the dataset test cases
|
||||
# dataset.test_cases = convert_goldens_to_test_cases(dataset.test_cases)
|
||||
#
|
||||
#
|
||||
# from deepeval.metrics import HallucinationMetric
|
||||
#
|
||||
#
|
||||
# metric = HallucinationMetric()
|
||||
# dataset.evaluate([metric])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
async def main():
|
||||
# await run_cognify_base_rag()
|
||||
# await cognify_search_base_rag("show_all_processes", "context")
|
||||
await cognify_search_graph("show_all_processes", "context")
|
||||
|
||||
asyncio.run(main())
|
||||
# run_cognify_base_rag_and_search()
|
||||
# # Data preprocessing before setting the dataset test cases
|
||||
# dataset.test_cases = convert_goldens_to_test_cases(dataset.test_cases)
|
||||
# from deepeval.metrics import HallucinationMetric
|
||||
# metric = HallucinationMetric()
|
||||
# dataset.evaluate([metric])
|
||||
pass
|
||||
Loading…
Add table
Reference in a new issue