fix: Fix based on PR comments
This commit is contained in:
parent
2337d36f7b
commit
205f5a9e0c
7 changed files with 40 additions and 43 deletions
|
|
@ -30,17 +30,14 @@ class AnthropicAdapter(LLMInterface):
|
|||
model: str
|
||||
default_instructor_mode = "anthropic_tools"
|
||||
|
||||
def __init__(self, max_completion_tokens: int, model: str = None):
|
||||
def __init__(self, max_completion_tokens: int, model: str = None, instructor_mode: str = None):
|
||||
import anthropic
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
|
||||
self.aclient = instructor.patch(
|
||||
create=anthropic.AsyncAnthropic(api_key=get_llm_config().llm_api_key).messages.create,
|
||||
mode=instructor.Mode(instructor_mode),
|
||||
mode=instructor.Mode(self.instructor_mode),
|
||||
)
|
||||
|
||||
self.model = model
|
||||
|
|
|
|||
|
|
@ -50,6 +50,7 @@ class GeminiAdapter(LLMInterface):
|
|||
model: str,
|
||||
api_version: str,
|
||||
max_completion_tokens: int,
|
||||
instructor_mode: str = None,
|
||||
fallback_model: str = None,
|
||||
fallback_api_key: str = None,
|
||||
fallback_endpoint: str = None,
|
||||
|
|
@ -64,15 +65,10 @@ class GeminiAdapter(LLMInterface):
|
|||
self.fallback_api_key = fallback_api_key
|
||||
self.fallback_endpoint = fallback_endpoint
|
||||
|
||||
from cognee.infrastructure.llm.config import get_llm_config
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
|
||||
self.aclient = instructor.from_litellm(
|
||||
litellm.acompletion, mode=instructor.Mode(instructor_mode)
|
||||
litellm.acompletion, mode=instructor.Mode(self.instructor_mode)
|
||||
)
|
||||
|
||||
@retry(
|
||||
|
|
|
|||
|
|
@ -50,6 +50,7 @@ class GenericAPIAdapter(LLMInterface):
|
|||
model: str,
|
||||
name: str,
|
||||
max_completion_tokens: int,
|
||||
instructor_mode: str = None,
|
||||
fallback_model: str = None,
|
||||
fallback_api_key: str = None,
|
||||
fallback_endpoint: str = None,
|
||||
|
|
@ -64,15 +65,10 @@ class GenericAPIAdapter(LLMInterface):
|
|||
self.fallback_api_key = fallback_api_key
|
||||
self.fallback_endpoint = fallback_endpoint
|
||||
|
||||
from cognee.infrastructure.llm.config import get_llm_config
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
|
||||
self.aclient = instructor.from_litellm(
|
||||
litellm.acompletion, mode=instructor.Mode(instructor_mode)
|
||||
litellm.acompletion, mode=instructor.Mode(self.instructor_mode)
|
||||
)
|
||||
|
||||
@retry(
|
||||
|
|
|
|||
|
|
@ -81,6 +81,7 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
model=llm_config.llm_model,
|
||||
transcription_model=llm_config.transcription_model,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
streaming=llm_config.llm_streaming,
|
||||
fallback_api_key=llm_config.fallback_api_key,
|
||||
fallback_endpoint=llm_config.fallback_endpoint,
|
||||
|
|
@ -101,6 +102,7 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
llm_config.llm_model,
|
||||
"Ollama",
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
)
|
||||
|
||||
elif provider == LLMProvider.ANTHROPIC:
|
||||
|
|
@ -109,7 +111,9 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
)
|
||||
|
||||
return AnthropicAdapter(
|
||||
max_completion_tokens=max_completion_tokens, model=llm_config.llm_model
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
model=llm_config.llm_model,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
)
|
||||
|
||||
elif provider == LLMProvider.CUSTOM:
|
||||
|
|
@ -126,6 +130,7 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
llm_config.llm_model,
|
||||
"Custom",
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
fallback_api_key=llm_config.fallback_api_key,
|
||||
fallback_endpoint=llm_config.fallback_endpoint,
|
||||
fallback_model=llm_config.fallback_model,
|
||||
|
|
@ -145,6 +150,7 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
max_completion_tokens=max_completion_tokens,
|
||||
endpoint=llm_config.llm_endpoint,
|
||||
api_version=llm_config.llm_api_version,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
)
|
||||
|
||||
elif provider == LLMProvider.MISTRAL:
|
||||
|
|
@ -160,6 +166,7 @@ def get_llm_client(raise_api_key_error: bool = True):
|
|||
model=llm_config.llm_model,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
endpoint=llm_config.llm_endpoint,
|
||||
instructor_mode=llm_config.llm_instructor_mode,
|
||||
)
|
||||
|
||||
elif provider == LLMProvider.MISTRAL:
|
||||
|
|
|
|||
|
|
@ -39,20 +39,24 @@ class MistralAdapter(LLMInterface):
|
|||
max_completion_tokens: int
|
||||
default_instructor_mode = "mistral_tools"
|
||||
|
||||
def __init__(self, api_key: str, model: str, max_completion_tokens: int, endpoint: str = None):
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
model: str,
|
||||
max_completion_tokens: int,
|
||||
endpoint: str = None,
|
||||
instructor_mode: str = None,
|
||||
):
|
||||
from mistralai import Mistral
|
||||
|
||||
self.model = model
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
|
||||
self.aclient = instructor.from_litellm(
|
||||
litellm.acompletion,
|
||||
mode=instructor.Mode(instructor_mode),
|
||||
mode=instructor.Mode(self.instructor_mode),
|
||||
api_key=get_llm_config().llm_api_key,
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -45,7 +45,13 @@ class OllamaAPIAdapter(LLMInterface):
|
|||
default_instructor_mode = "json_mode"
|
||||
|
||||
def __init__(
|
||||
self, endpoint: str, api_key: str, model: str, name: str, max_completion_tokens: int
|
||||
self,
|
||||
endpoint: str,
|
||||
api_key: str,
|
||||
model: str,
|
||||
name: str,
|
||||
max_completion_tokens: int,
|
||||
instructor_mode: str = None,
|
||||
):
|
||||
self.name = name
|
||||
self.model = model
|
||||
|
|
@ -53,16 +59,11 @@ class OllamaAPIAdapter(LLMInterface):
|
|||
self.endpoint = endpoint
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
|
||||
from cognee.infrastructure.llm.config import get_llm_config
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
|
||||
self.aclient = instructor.from_openai(
|
||||
OpenAI(base_url=self.endpoint, api_key=self.api_key),
|
||||
mode=instructor.Mode(instructor_mode),
|
||||
mode=instructor.Mode(self.instructor_mode),
|
||||
)
|
||||
|
||||
@retry(
|
||||
|
|
|
|||
|
|
@ -70,25 +70,21 @@ class OpenAIAdapter(LLMInterface):
|
|||
model: str,
|
||||
transcription_model: str,
|
||||
max_completion_tokens: int,
|
||||
instructor_mode: str = None,
|
||||
streaming: bool = False,
|
||||
fallback_model: str = None,
|
||||
fallback_api_key: str = None,
|
||||
fallback_endpoint: str = None,
|
||||
):
|
||||
from cognee.infrastructure.llm.config import get_llm_config
|
||||
|
||||
config_instructor_mode = get_llm_config().llm_instructor_mode
|
||||
instructor_mode = (
|
||||
config_instructor_mode if config_instructor_mode else self.default_instructor_mode
|
||||
)
|
||||
self.instructor_mode = instructor_mode if instructor_mode else self.default_instructor_mode
|
||||
# TODO: With gpt5 series models OpenAI expects JSON_SCHEMA as a mode for structured outputs.
|
||||
# Make sure all new gpt models will work with this mode as well.
|
||||
if "gpt-5" in model:
|
||||
self.aclient = instructor.from_litellm(
|
||||
litellm.acompletion, mode=instructor.Mode(instructor_mode)
|
||||
litellm.acompletion, mode=instructor.Mode(self.instructor_mode)
|
||||
)
|
||||
self.client = instructor.from_litellm(
|
||||
litellm.completion, mode=instructor.Mode(instructor_mode)
|
||||
litellm.completion, mode=instructor.Mode(self.instructor_mode)
|
||||
)
|
||||
else:
|
||||
self.aclient = instructor.from_litellm(litellm.acompletion)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue