Rebase onto code-graph
This commit is contained in:
parent
6339295d6b
commit
1bfa3a0ea3
3 changed files with 163 additions and 41 deletions
34
evals/EC2_README.md
Normal file
34
evals/EC2_README.md
Normal file
|
|
@ -0,0 +1,34 @@
|
|||
Create an EC2 Instance with the
|
||||
|
||||
`Ubuntu Image`
|
||||
|
||||
Many instance types will work, we used:
|
||||
|
||||
`m7a.2xlarge` # more than 8 parallel processes doesn't seem to speed up overall process. Maybe to do with docker parallelism?
|
||||
|
||||
DON'T FORGET TO ADD
|
||||
|
||||
`500 GB storage`
|
||||
|
||||
Or the evaluation run will run out of space
|
||||
|
||||
--------------------------------------------------------
|
||||
|
||||
Then ssh into the instance, run
|
||||
|
||||
source evals/cloud/setup_ubuntu_instance.sh
|
||||
|
||||
sudo usermod -aG docker $USER
|
||||
|
||||
disconnect, and reconnect.
|
||||
|
||||
Then enter a `screen` and activate the virtual env
|
||||
|
||||
screen
|
||||
source venv/bin/activate
|
||||
|
||||
then, from cognee, you can run swe_bench:
|
||||
|
||||
python evals/eval_swe_bench --cognee_off --max_workers=N_CPUS
|
||||
|
||||
Building the environment images takes roughly 17 minutes
|
||||
43
evals/cloud/setup_ubuntu_instance.sh
Normal file
43
evals/cloud/setup_ubuntu_instance.sh
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
|
||||
sudo apt-get update
|
||||
sudo apt-get install ca-certificates curl
|
||||
sudo install -m 0755 -d /etc/apt/keyrings
|
||||
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
|
||||
sudo chmod a+r /etc/apt/keyrings/docker.asc
|
||||
|
||||
# Add the repository to Apt sources:
|
||||
echo \
|
||||
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
|
||||
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
|
||||
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
|
||||
sudo apt-get update
|
||||
|
||||
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
|
||||
|
||||
sudo docker run hello-world
|
||||
|
||||
sudo apt install unzip
|
||||
|
||||
sudo apt-get install python3-virtualenv
|
||||
|
||||
sudo add-apt-repository ppa:deadsnakes/ppa
|
||||
sudo apt update
|
||||
|
||||
sudo apt install python3.11
|
||||
|
||||
virtualenv venv --python=python3.11
|
||||
|
||||
source venv/bin/activate
|
||||
|
||||
pip install poetry
|
||||
|
||||
poetry install
|
||||
|
||||
pip install swebench transformers sentencepiece
|
||||
|
||||
groups | grep docker
|
||||
|
||||
python evals/eval_swe_bench.py --cognee_off
|
||||
|
||||
sudo usermod -aG docker $USER
|
||||
|
||||
|
|
@ -1,6 +1,7 @@
|
|||
import argparse
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from datasets import Dataset
|
||||
|
|
@ -29,7 +30,28 @@ from evals.eval_utils import ingest_repos
|
|||
from evals.eval_utils import download_github_repo
|
||||
from evals.eval_utils import delete_repo
|
||||
|
||||
async def generate_patch_with_cognee(instance):
|
||||
|
||||
def check_install_package(package_name):
|
||||
"""
|
||||
Check if a pip package is installed and install it if not.
|
||||
Returns True if package is/was installed successfully, False otherwise.
|
||||
"""
|
||||
try:
|
||||
__import__(package_name)
|
||||
return True
|
||||
except ImportError:
|
||||
try:
|
||||
subprocess.check_call(
|
||||
[sys.executable, "-m", "pip", "install", package_name]
|
||||
)
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system()
|
||||
|
||||
|
|
@ -59,23 +81,22 @@ async def generate_patch_with_cognee(instance):
|
|||
|
||||
await render_graph(None, include_labels = True, include_nodes = True)
|
||||
|
||||
problem_statement = instance['problem_statement']
|
||||
problem_statement = instance["problem_statement"]
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
|
||||
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
|
||||
|
||||
prompt = "\n".join([
|
||||
instructions,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str
|
||||
])
|
||||
prompt = "\n".join(
|
||||
[
|
||||
instructions,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str,
|
||||
]
|
||||
)
|
||||
|
||||
return 0
|
||||
|
||||
''' :TODO: We have to find out how do we do the generation
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
|
|
@ -84,13 +105,11 @@ async def generate_patch_with_cognee(instance):
|
|||
)
|
||||
|
||||
return answer_prediction
|
||||
'''
|
||||
|
||||
async def generate_patch_without_cognee(instance):
|
||||
problem_statement = instance['problem_statement']
|
||||
async def generate_patch_without_cognee(instance, llm_client):
|
||||
problem_statement = instance["problem_statement"]
|
||||
prompt = instance["text"]
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
|
|
@ -100,43 +119,56 @@ async def generate_patch_without_cognee(instance):
|
|||
|
||||
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
if with_cognee:
|
||||
model_name = "with_cognee"
|
||||
pred_func = generate_patch_with_cognee
|
||||
futures = [
|
||||
(instance["instance_id"], generate_patch_with_cognee(instance))
|
||||
for instance in dataset
|
||||
]
|
||||
else:
|
||||
model_name = "without_cognee"
|
||||
pred_func = generate_patch_without_cognee
|
||||
futures = [
|
||||
(instance["instance_id"], generate_patch_without_cognee(instance, llm_client))
|
||||
for instance in dataset
|
||||
]
|
||||
model_patches = await asyncio.gather(*[x[1] for x in futures])
|
||||
|
||||
preds = [
|
||||
{
|
||||
"instance_id": instance_id,
|
||||
"model_patch": model_patch,
|
||||
"model_name_or_path": model_name,
|
||||
}
|
||||
for (instance_id, _), model_patch in zip(futures, model_patches)
|
||||
]
|
||||
|
||||
for instance in dataset:
|
||||
await pred_func(instance)
|
||||
|
||||
'''
|
||||
preds = [{"instance_id": instance["instance_id"],
|
||||
"model_patch": await pred_func(instance),
|
||||
"model_name_or_path": model_name} for instance in dataset]
|
||||
'''
|
||||
return 0
|
||||
return preds
|
||||
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run LLM predictions on SWE-bench dataset")
|
||||
parser.add_argument('--cognee_off', action='store_true')
|
||||
description="Run LLM predictions on SWE-bench dataset"
|
||||
)
|
||||
parser.add_argument("--cognee_off", action="store_true")
|
||||
parser.add_argument("--max_workers", type=int, required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
for dependency in ["transformers", "sentencepiece", "swebench"]:
|
||||
check_install_package(dependency)
|
||||
|
||||
if args.cognee_off:
|
||||
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
|
||||
dataset = load_swebench_dataset(dataset_name, split='test')
|
||||
dataset_name = "princeton-nlp/SWE-bench_Lite_bm25_13K"
|
||||
dataset = load_swebench_dataset(dataset_name, split="test")
|
||||
predictions_path = "preds_nocognee.json"
|
||||
if not Path(predictions_path).exists():
|
||||
preds = await get_preds(dataset, with_cognee=False)
|
||||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
else:
|
||||
dataset_name = 'princeton-nlp/SWE-bench_Lite'
|
||||
swe_dataset = load_swebench_dataset(
|
||||
dataset_name, split='test')[:1]
|
||||
dataset_name = "princeton-nlp/SWE-bench_Lite"
|
||||
swe_dataset = load_swebench_dataset(dataset_name, split="test")[:1]
|
||||
filepath = Path("SWE-bench_testsample")
|
||||
if filepath.exists():
|
||||
dataset = Dataset.load_from_disk(filepath)
|
||||
|
|
@ -147,12 +179,25 @@ async def main():
|
|||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
|
||||
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
|
||||
"--dataset_name", dataset_name,
|
||||
"--split", "test",
|
||||
"--predictions_path", predictions_path,
|
||||
"--max_workers", "1",
|
||||
"--run_id", "test_run"])
|
||||
|
||||
subprocess.run(
|
||||
[
|
||||
"python",
|
||||
"-m",
|
||||
"swebench.harness.run_evaluation",
|
||||
"--dataset_name",
|
||||
dataset_name,
|
||||
"--split",
|
||||
"test",
|
||||
"--predictions_path",
|
||||
predictions_path,
|
||||
"--max_workers",
|
||||
str(args.max_workers),
|
||||
"--run_id",
|
||||
"test_run",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue