diff --git a/examples/python/simple_example.py b/examples/python/simple_example.py new file mode 100644 index 000000000..9b64142ed --- /dev/null +++ b/examples/python/simple_example.py @@ -0,0 +1,39 @@ +import cognee +import asyncio +from cognee.api.v1.search import SearchType + +# Prerequisites: +# 1. Copy `.env.template` and rename it to `.env`. +# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field: +# LLM_API_KEY = "your_key_here" +# 3. (Optional) To minimize setup effort, set `VECTOR_DB_PROVIDER="lancedb"` in `.env". + +async def main(): + # Create a clean slate for cognee -- reset data and system state + await cognee.prune.prune_data() + await cognee.prune.prune_system(metadata=True) + + # cognee knowledge graph will be created based on this text + text = """ + Natural language processing (NLP) is an interdisciplinary + subfield of computer science and information retrieval. + """ + + # Add the text, and make it available for cognify + await cognee.add(text) + + # Use LLMs and cognee to create knowledge graph + await cognee.cognify() + + # Query cognee for insights on the added text + search_results = await cognee.search( + SearchType.INSIGHTS, + {'query': 'Tell me about NLP'} + ) + + # Display search results + for result_text in search_results: + print(result_text) + +if __name__ == '__main__': + asyncio.run(main())