fix: Resolve issue with table names in SQL commands
Some SQL commands require lowercase characters in table names unless table name is wrapped in quotes. Renamed all new tables to use lowercase Fix COG-677
This commit is contained in:
parent
4b55354dce
commit
15b7b8ef2b
10 changed files with 12 additions and 7 deletions
|
|
@ -8,6 +8,7 @@ class MetaData(TypedDict):
|
|||
index_fields: list[str]
|
||||
|
||||
class DataPoint(BaseModel):
|
||||
__tablename__ = "data_point"
|
||||
id: UUID = Field(default_factory = uuid4)
|
||||
updated_at: Optional[datetime] = datetime.now(timezone.utc)
|
||||
_metadata: Optional[MetaData] = {
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ from cognee.infrastructure.engine import DataPoint
|
|||
from cognee.modules.data.processing.document_types import Document
|
||||
|
||||
class DocumentChunk(DataPoint):
|
||||
__tablename__ = "document_chunk"
|
||||
text: str
|
||||
word_count: int
|
||||
chunk_index: int
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
|
|||
from .EntityType import EntityType
|
||||
|
||||
class Entity(DataPoint):
|
||||
__tablename__ = "entity"
|
||||
name: str
|
||||
is_a: EntityType
|
||||
description: str
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@ from cognee.infrastructure.engine import DataPoint
|
|||
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
|
||||
|
||||
class EntityType(DataPoint):
|
||||
__tablename__ = "entity_type"
|
||||
name: str
|
||||
type: str
|
||||
description: str
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ async def query_chunks(query: str) -> list[dict]:
|
|||
"""
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
found_chunks = await vector_engine.search("DocumentChunk_text", query, limit = 5)
|
||||
found_chunks = await vector_engine.search("document_chunk_text", query, limit = 5)
|
||||
|
||||
chunks = [result.payload for result in found_chunks]
|
||||
|
||||
|
|
|
|||
|
|
@ -27,8 +27,8 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s
|
|||
else:
|
||||
vector_engine = get_vector_engine()
|
||||
results = await asyncio.gather(
|
||||
vector_engine.search("Entity_name", query_text = query, limit = 5),
|
||||
vector_engine.search("EntityType_name", query_text = query, limit = 5),
|
||||
vector_engine.search("entity_name", query_text = query, limit = 5),
|
||||
vector_engine.search("entity_type_name", query_text = query, limit = 5),
|
||||
)
|
||||
results = [*results[0], *results[1]]
|
||||
relevant_results = [result for result in results if result.score < 0.5][:5]
|
||||
|
|
|
|||
|
|
@ -16,10 +16,10 @@ async def index_data_points(data_points: list[DataPoint]):
|
|||
data_point_type = type(data_point)
|
||||
|
||||
for field_name in data_point._metadata["index_fields"]:
|
||||
index_name = f"{data_point_type.__name__}.{field_name}"
|
||||
index_name = f"{data_point_type.__tablename__}.{field_name}"
|
||||
|
||||
if index_name not in created_indexes:
|
||||
await vector_engine.create_vector_index(data_point_type.__name__, field_name)
|
||||
await vector_engine.create_vector_index(data_point_type.__tablename__, field_name)
|
||||
created_indexes[index_name] = True
|
||||
|
||||
if index_name not in index_points:
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
|
|||
from cognee.modules.data.processing.document_types import Document
|
||||
|
||||
class TextSummary(DataPoint):
|
||||
__tablename__ = "text_summary"
|
||||
text: str
|
||||
made_from: DocumentChunk
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ async def query_summaries(query: str) -> list:
|
|||
"""
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
summaries_results = await vector_engine.search("TextSummary_text", query, limit = 5)
|
||||
summaries_results = await vector_engine.search("text_summary_text", query, limit = 5)
|
||||
|
||||
summaries = [summary.payload for summary in summaries_results]
|
||||
|
||||
|
|
|
|||
|
|
@ -65,7 +65,7 @@ async def main():
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node = (await vector_engine.search("entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query_text = random_node_name)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue