Version 0.1.22 (#438)

* Revert "fix: Add metadata reflection fix to sqlite as well"

This reverts commit 394a0b2dfb.

* COG-810 Implement a top-down dependency graph builder tool (#268)

* feat: parse repo to call graph

* Update/repo_processor/top_down_repo_parse.py task

* fix: minor improvements

* feat: file parsing jedi script optimisation

---------

* Add type to DataPoint metadata (#364)

* Add missing index_fields

* Use DataPoint UUID type in pgvector create_data_points

* Make _metadata mandatory everywhere

* feat: Add search by dataset for cognee

Added ability to search by datasets for cognee users

Feature COG-912

* feat: outsources chunking parameters to extract chunk from documents … (#289)

* feat: outsources chunking parameters to extract chunk from documents task

* fix: Remove backend lock from UI

Removed lock that prevented using multiple datasets in cognify

Fix COG-912

* COG 870 Remove duplicate edges from the code graph (#293)

* feat: turn summarize_code into generator

* feat: extract run_code_graph_pipeline, update the pipeline

* feat: minimal code graph example

* refactor: update argument

* refactor: move run_code_graph_pipeline to cognify/code_graph_pipeline

* refactor: indentation and whitespace nits

* refactor: add deprecated use comments and warnings

---------

Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
Co-authored-by: Igor Ilic <30923996+dexters1@users.noreply.github.com>
Co-authored-by: Boris <boris@topoteretes.com>

* test: Added test for getting of documents for search

Added test to verify getting documents related to datasets intended for search

Test COG-912

* Structured code summarization (#375)

* feat: turn summarize_code into generator

* feat: extract run_code_graph_pipeline, update the pipeline

* feat: minimal code graph example

* refactor: update argument

* refactor: move run_code_graph_pipeline to cognify/code_graph_pipeline

* refactor: indentation and whitespace nits

* refactor: add deprecated use comments and warnings

* Structured code summarization

* add missing prompt file

* Remove summarization_model argument from summarize_code and fix typehinting

* minor refactors

---------

Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
Co-authored-by: Igor Ilic <30923996+dexters1@users.noreply.github.com>
Co-authored-by: Boris <boris@topoteretes.com>

* fix: Resolve issue with cognify router graph model default value

Resolve issue with default value for graph model in cognify endpoint

Fix

* chore: Resolve typo in getting documents code

Resolve typo in code

chore COG-912

* Update .github/workflows/dockerhub.yml

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>

* Update .github/workflows/dockerhub.yml

* Update .github/workflows/dockerhub.yml

* Update .github/workflows/dockerhub.yml

* Update get_cognify_router.py

* fix: Resolve syntax issue with cognify router

Resolve syntax issue with cognify router

Fix

* feat: Add ruff pre-commit hook for linting and formatting

Added formatting and linting on pre-commit hook

Feature COG-650

* chore: Update ruff lint options in pyproject file

Update ruff lint options in pyproject file

Chore

* test: Add ruff linter github action

Added linting check with ruff in github actions

Test COG-650

* feat: deletes executor limit from get_repo_file_dependencies

* feat: implements mock feature in LiteLLM engine

* refactor: Remove changes to cognify router

Remove changes to cognify router

Refactor COG-650

* fix: fixing boolean env for github actions

* test: Add test for ruff format for cognee code

Test if code is formatted for cognee

Test COG-650

* refactor: Rename ruff gh actions

Rename ruff gh actions to be more understandable

Refactor COG-650

* chore: Remove checking of ruff lint and format on push

Remove checking of ruff lint and format on push

Chore COG-650

* feat: Add deletion of local files when deleting data

Delete local files when deleting data from cognee

Feature COG-475

* fix: changes back the max workers to 12

* feat: Adds mock summary for codegraph pipeline

* refacotr: Add current development status

Save current development status

Refactor

* Fix langfuse

* Fix langfuse

* Fix langfuse

* Add evaluation notebook

* Rename eval notebook

* chore: Add temporary state of development

Add temp development state to branch

Chore

* fix: Add poetry.lock file, make langfuse mandatory

Added langfuse as mandatory dependency, added poetry.lock file

Fix

* Fix: fixes langfuse config settings

* feat: Add deletion of local files made by cognee through data endpoint

Delete local files made by cognee when deleting data from database through endpoint

Feature COG-475

* test: Revert changes on test_pgvector

Revert changes on test_pgvector which were made to test deletion of local files

Test COG-475

* chore: deletes the old test for the codegraph pipeline

* test: Add test to verify deletion of local files

Added test that checks local files created by cognee will be deleted and those not created by cognee won't

Test COG-475

* chore: deletes unused old version of the codegraph

* chore: deletes unused imports from code_graph_pipeline

* Ingest non-code files

* Fixing review findings

* Ingest non-code files (#395)

* Ingest non-code files

* Fixing review findings

* test: Update test regarding message

Update assertion message, add veryfing of file existence

* Handle retryerrors in code summary (#396)

* Handle retryerrors in code summary

* Log instead of print

* fix: updates the acreate_structured_output

* chore: Add logging to sentry when file which should exist can't be found

Log to sentry that a file which should exist can't be found

Chore COG-475

* Fix diagram

* fix: refactor mcp

* Add Smithery CLI installation instructions and badge

* Move readme

* Update README.md

* Update README.md

* Cog 813 source code chunks (#383)

* fix: pass the list of all CodeFiles to enrichment task

* feat: introduce SourceCodeChunk, update metadata

* feat: get_source_code_chunks code graph pipeline task

* feat: integrate get_source_code_chunks task, comment out summarize_code

* Fix code summarization (#387)

* feat: update data models

* feat: naive parse long strings in source code

* fix: get_non_py_files instead of get_non_code_files

* fix: limit recursion, add comment

* handle embedding empty input error (#398)

* feat: robustly handle CodeFile source code

* refactor: sort imports

* todo: add support for other embedding models

* feat: add custom logger

* feat: add robustness to get_source_code_chunks

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>

* feat: improve embedding exceptions

* refactor: format indents, rename module

---------

Co-authored-by: alekszievr <44192193+alekszievr@users.noreply.github.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>

* Fix diagram

* Fix diagram

* Fix instructions

* Fix instructions

* adding and fixing files

* Update README.md

* ruff format

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Fix linter issues

* Implement PR review

* Comment out profiling

* Comment out profiling

* Comment out profiling

* fix: add allowed extensions

* fix: adhere UnstructuredDocument.read() to Document

* feat: time code graph run and add mock support

* Fix ollama, work on visualization

* fix: Fixes faulty logging format and sets up error logging in dynamic steps example

* Overcome ContextWindowExceededError by checking token count while chunking (#413)

* fix: Fixes duplicated edges in cognify by limiting the recursion depth in add datapoints

* Adjust AudioDocument and handle None token limit

* Handle azure models as well

* Fix visualization

* Fix visualization

* Fix visualization

* Add clean logging to code graph example

* Remove setting envvars from arg

* fix: fixes create_cognee_style_network_with_logo unit test

* fix: removes accidental remained print

* Fix visualization

* Fix visualization

* Fix visualization

* Get embedding engine instead of passing it. Get it from vector engine instead of direct getter.

* Fix visualization

* Fix visualization

* Fix poetry issues

* Get embedding engine instead of passing it in code chunking.

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* chore: Update version of poetry install action

* chore: Update action to trigger on pull request for any branch

* chore: Remove if in github action to allow triggering on push

* chore: Remove if condition to allow gh actions to trigger on push to PR

* chore: Update poetry version in github actions

* chore: Set fixed ubuntu version to 22.04

* chore: Update py lint to use ubuntu 22.04

* chore: update ubuntu version to 22.04

* feat: implements the first version of graph based completion in search

* chore: Update python 3.9 gh action to use 3.12 instead

* chore: Update formatting of utils.py

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Fix poetry issues

* Adjust integration tests

* fix: Fixes ruff formatting

* Handle circular import

* fix: Resolve profiler issue with partial and recursive logger imports

Resolve issue for profiler with partial and recursive logger imports

* fix: Remove logger from __init__.py file

* test: Test profiling on HEAD branch

* test: Return profiler to base branch

* Set max_tokens in config

* Adjust SWE-bench script to code graph pipeline call

* Adjust SWE-bench script to code graph pipeline call

* fix: Add fix for accessing dictionary elements that don't exits

Using get for the text key instead of direct access to handle situation if the text key doesn't exist

* feat: Add ability to change graph database configuration through cognee

* feat: adds pydantic types to graph layer models

* test: Test ubuntu 24.04

* test: change all actions to ubuntu-latest

* feat: adds basic retriever for swe bench

* Match Ruff version in config to the one in github actions

* feat: implements code retreiver

* Fix: fixes unit test for codepart search

* Format with Ruff 0.9.0

* Fix: deleting incorrect repo path

* docs: Add LlamaIndex Cognee integration notebook

Added LlamaIndex Cognee integration notebook

* test: Add github action for testing llama index cognee integration notebook

* fix: resolve issue with langfuse dependency installation when integrating cognee in different packages

* version: Increase version to 0.1.21

* fix: update dependencies of the mcp server

* Update README.md

* Fix: Fixes logging setup

* feat: deletes on the fly embeddings as uses edge collections

* fix: Change nbformat on llama index integration notebook

* fix: Resolve api key issue with llama index integration notebook

* fix: Attempt to resolve issue with Ubuntu 24.04 segmentation fault

* version: Increase version to 0.1.22

---------

Co-authored-by: vasilije <vas.markovic@gmail.com>
Co-authored-by: Igor Ilic <igorilic03@gmail.com>
Co-authored-by: Igor Ilic <30923996+dexters1@users.noreply.github.com>
Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
Co-authored-by: alekszievr <44192193+alekszievr@users.noreply.github.com>
Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Co-authored-by: Rita Aleksziev <alekszievr@gmail.com>
Co-authored-by: Henry Mao <1828968+calclavia@users.noreply.github.com>
This commit is contained in:
Boris 2025-01-13 22:36:42 +01:00 committed by GitHub
parent 886e9c7eb3
commit 0f97f8f71b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 336 additions and 81 deletions

View file

@ -7,7 +7,7 @@ on:
jobs:
docker-build-and-push:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Checkout repository

View file

@ -16,7 +16,7 @@ jobs:
fail-fast: true
matrix:
os:
- ubuntu-22.04
- ubuntu-latest
python-version: ["3.10.x", "3.11.x"]
defaults:

View file

@ -51,6 +51,7 @@ jobs:
env:
ENV: 'dev'
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}
run: |

View file

@ -3,7 +3,7 @@ on: [ pull_request ]
jobs:
ruff:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: astral-sh/ruff-action@v2

View file

@ -3,7 +3,7 @@ on: [ pull_request ]
jobs:
ruff:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: astral-sh/ruff-action@v2

View file

@ -16,7 +16,7 @@ env:
jobs:
run_deduplication_test:
name: test
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
defaults:
run:
shell: bash

View file

@ -0,0 +1,20 @@
name: test | llama index cognee integration notebook
on:
workflow_dispatch:
pull_request:
types: [labeled, synchronize]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
run_notebook_test:
uses: ./.github/workflows/reusable_notebook.yml
with:
notebook-location: notebooks/llama_index_cognee_integration.ipynb
secrets:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }}
GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }}

View file

@ -17,7 +17,7 @@ jobs:
run_qdrant_integration_test:
name: test
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
defaults:
run:
shell: bash

View file

@ -17,7 +17,7 @@ jobs:
run_weaviate_integration_test:
name: test
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
defaults:
run:
shell: bash

View file

@ -101,15 +101,9 @@ cognee.config.set_graphistry_config({
})
```
(Optional) To run the UI, go to cognee-frontend directory and run:
```
npm run dev
```
or run everything in a docker container:
```
docker-compose up
```
Then navigate to localhost:3000
(Optional) To run the with an UI, go to cognee-mcp directory and follow the instructions.
You will be able to use cognee as mcp tool and create graphs and query them.
If you want to use Cognee with PostgreSQL, make sure to set the following values in the .env file:
```

View file

@ -8,7 +8,7 @@ from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInte
from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge
from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph
import heapq
from graphistry import edges
import asyncio
class CogneeGraph(CogneeAbstractGraph):
@ -127,51 +127,25 @@ class CogneeGraph(CogneeAbstractGraph):
else:
print(f"Node with id {node_id} not found in the graph.")
async def map_vector_distances_to_graph_edges(
self, vector_engine, query
) -> None: # :TODO: When we calculate edge embeddings in vector db change this similarly to node mapping
async def map_vector_distances_to_graph_edges(self, vector_engine, query) -> None:
try:
# Step 1: Generate the query embedding
query_vector = await vector_engine.embed_data([query])
query_vector = query_vector[0]
if query_vector is None or len(query_vector) == 0:
raise ValueError("Failed to generate query embedding.")
# Step 2: Collect all unique relationship types
unique_relationship_types = set()
for edge in self.edges:
relationship_type = edge.attributes.get("relationship_type")
if relationship_type:
unique_relationship_types.add(relationship_type)
edge_distances = await vector_engine.get_distance_from_collection_elements(
"edge_type_relationship_name", query_text=query
)
# Step 3: Embed all unique relationship types
unique_relationship_types = list(unique_relationship_types)
relationship_type_embeddings = await vector_engine.embed_data(unique_relationship_types)
embedding_map = {result.payload["text"]: result.score for result in edge_distances}
# Step 4: Map relationship types to their embeddings and calculate distances
embedding_map = {}
for relationship_type, embedding in zip(
unique_relationship_types, relationship_type_embeddings
):
edge_vector = np.array(embedding)
# Calculate cosine similarity
similarity = np.dot(query_vector, edge_vector) / (
np.linalg.norm(query_vector) * np.linalg.norm(edge_vector)
)
distance = 1 - similarity
# Round the distance to 4 decimal places and store it
embedding_map[relationship_type] = round(distance, 4)
# Step 4: Assign precomputed distances to edges
for edge in self.edges:
relationship_type = edge.attributes.get("relationship_type")
if not relationship_type or relationship_type not in embedding_map:
print(f"Edge {edge} has an unknown or missing relationship type.")
continue
# Assign the precomputed distance
edge.attributes["vector_distance"] = embedding_map[relationship_type]
except Exception as ex:

View file

@ -62,24 +62,6 @@ async def brute_force_triplet_search(
return retrieved_results
def delete_duplicated_vector_db_elements(
collections, results
): #:TODO: This is just for now to fix vector db duplicates
results_dict = {}
for collection, results in zip(collections, results):
seen_ids = set()
unique_results = []
for result in results:
if result.id not in seen_ids:
unique_results.append(result)
seen_ids.add(result.id)
else:
print(f"Duplicate found in collection '{collection}': {result.id}")
results_dict[collection] = unique_results
return results_dict
async def brute_force_search(
query: str, user: User, top_k: int, collections: List[str] = None
) -> list:
@ -125,10 +107,7 @@ async def brute_force_search(
]
)
############################################# :TODO: Change when vector db does not contain duplicates
node_distances = delete_duplicated_vector_db_elements(collections, results)
# node_distances = {collection: result for collection, result in zip(collections, results)}
##############################################
node_distances = {collection: result for collection, result in zip(collections, results)}
memory_fragment = CogneeGraph()
@ -140,14 +119,12 @@ async def brute_force_search(
await memory_fragment.map_vector_distances_to_graph_nodes(node_distances=node_distances)
#:TODO: Change when vectordb contains edge embeddings
await memory_fragment.map_vector_distances_to_graph_edges(vector_engine, query)
results = await memory_fragment.calculate_top_triplet_importances(k=top_k)
send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id)
#:TODO: Once we have Edge pydantic models we should retrieve the exact edge and node objects from graph db
return results
except Exception as e:

View file

@ -1,4 +1,4 @@
from sqlalchemy.orm import joinedload
from sqlalchemy.orm import selectinload
from sqlalchemy.future import select
from cognee.modules.users.models import User
from cognee.infrastructure.databases.relational import get_relational_engine
@ -11,7 +11,7 @@ async def get_default_user():
async with db_engine.get_async_session() as session:
query = (
select(User)
.options(joinedload(User.groups))
.options(selectinload(User.groups))
.where(User.email == "default_user@example.com")
)

View file

@ -468,16 +468,20 @@ def graph_to_tuple(graph):
def setup_logging(log_level=logging.INFO):
"""This method sets up the logging configuration."""
"""Sets up the logging configuration."""
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s\n")
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
stream_handler.setLevel(log_level)
logging.basicConfig(
level=log_level,
handlers=[stream_handler],
)
root_logger = logging.getLogger()
if root_logger.hasHandlers():
root_logger.handlers.clear()
root_logger.addHandler(stream_handler)
root_logger.setLevel(log_level)
# ---------------- Example Usage ----------------

View file

@ -192,7 +192,7 @@ async def main(enable_steps):
if __name__ == "__main__":
setup_logging(logging.INFO)
setup_logging(logging.ERROR)
rebuild_kg = True
retrieve = True

File diff suppressed because one or more lines are too long

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "cognee"
version = "0.1.21"
version = "0.1.22"
description = "Cognee - is a library for enriching LLM context with a semantic layer for better understanding and reasoning."
authors = ["Vasilije Markovic", "Boris Arzentar"]
readme = "README.md"