Added networkx to the graph

This commit is contained in:
Vasilije 2023-11-26 22:17:01 +01:00
parent 4a8db1fe51
commit 0a07b1e96b

View file

@ -17,7 +17,7 @@ import openai
import instructor
from openai import OpenAI
from openai import AsyncOpenAI
import pickle
from abc import ABC, abstractmethod
@ -582,10 +582,23 @@ class Neo4jGraphDB(AbstractGraphDB):
return None
class NetworkXGraphDB(AbstractGraphDB):
def __init__(self):
self.graph = nx.Graph()
# Initialize other necessary properties or configurations
class NetworkXGraphDB:
def __init__(self, filename='networkx_graph.pkl'):
self.filename = filename
try:
self.graph = self.load_graph() # Attempt to load an existing graph
except (FileNotFoundError, EOFError, pickle.UnpicklingError):
self.graph = nx.Graph() # Create a new graph if loading failed
def save_graph(self):
""" Save the graph to a file using pickle """
with open(self.filename, 'wb') as f:
pickle.dump(self.graph, f)
def load_graph(self):
""" Load the graph from a file using pickle """
with open(self.filename, 'rb') as f:
return pickle.load(f)
def create_base_cognitive_architecture(self, user_id: str):
# Add nodes for user and memory types if they don't exist
@ -599,19 +612,24 @@ class NetworkXGraphDB(AbstractGraphDB):
self.graph.add_edge(user_id, f"{user_id}_episodic", relation='HAS_EPISODIC_MEMORY')
self.graph.add_edge(user_id, f"{user_id}_buffer", relation='HAS_BUFFER')
self.save_graph() # Save the graph after modifying it
def delete_all_user_memories(self, user_id: str):
# Remove nodes and edges related to the user's memories
for memory_type in ['semantic', 'episodic', 'buffer']:
memory_node = f"{user_id}_{memory_type}"
self.graph.remove_node(memory_node)
self.save_graph() # Save the graph after modifying it
def delete_specific_memory_type(self, user_id: str, memory_type: str):
# Remove a specific type of memory node and its related edges
memory_node = f"{user_id}_{memory_type.lower()}"
if memory_node in self.graph:
self.graph.remove_node(memory_node)
# Methods for retrieving semantic, episodic, and buffer memories
self.save_graph() # Save the graph after modifying it
def retrieve_semantic_memory(self, user_id: str):
return [n for n in self.graph.neighbors(f"{user_id}_semantic")]
@ -621,6 +639,35 @@ class NetworkXGraphDB(AbstractGraphDB):
def retrieve_buffer_memory(self, user_id: str):
return [n for n in self.graph.neighbors(f"{user_id}_buffer")]
def generate_graph_semantic_memory_document_summary(self, document_summary, unique_graphdb_mapping_values, document_namespace, user_id):
for node, attributes in unique_graphdb_mapping_values.items():
self.graph.add_node(node, **attributes)
self.graph.add_edge(f"{user_id}_semantic", node, relation='HAS_KNOWLEDGE')
self.save_graph()
def generate_document_summary(self, document_summary, unique_graphdb_mapping_values, document_namespace, user_id):
self.generate_graph_semantic_memory_document_summary(document_summary, unique_graphdb_mapping_values, document_namespace, user_id)
async def get_document_categories(self, user_id):
return [self.graph.nodes[n]['category'] for n in self.graph.neighbors(f"{user_id}_semantic") if 'category' in self.graph.nodes[n]]
async def get_document_ids(self, user_id, category):
return [n for n in self.graph.neighbors(f"{user_id}_semantic") if self.graph.nodes[n].get('category') == category]
def create_document_node(self, document_summary, user_id):
d_id = document_summary['d_id']
self.graph.add_node(d_id, **document_summary)
self.graph.add_edge(f"{user_id}_semantic", d_id, relation='HAS_DOCUMENT')
self.save_graph()
def update_document_node_with_namespace(self, user_id, vectordb_namespace, document_id):
if self.graph.has_node(document_id):
self.graph.nodes[document_id]['vectordbNamespace'] = vectordb_namespace
self.save_graph()
def get_namespaces_by_document_category(self, user_id, category):
return [self.graph.nodes[n].get('vectordbNamespace') for n in self.graph.neighbors(f"{user_id}_semantic") if self.graph.nodes[n].get('category') == category]
class GraphDBFactory:
def create_graph_db(self, db_type, **kwargs):
if db_type == 'neo4j':