Running inference with and without cognee

This commit is contained in:
Rita Aleksziev 2024-11-14 16:28:03 +01:00
parent d0fcd25826
commit 094ba7233e

81
evals/eval_swe_bench.py Normal file
View file

@ -0,0 +1,81 @@
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
from evals.eval_utils import download_instances
import cognee
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
import os
from pathlib import Path
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.shared.data_models import Answer
async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata = True)
dataset_name = "SWE_test_data"
code_text = dataset[0]["text"][:100000]
await cognee.add([code_text], dataset_name)
await cognee.cognify([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
problem_statement = dataset[0]['problem_statement']
instructions = (
f"I need you to solve this issue by looking at the provided knowledge graph and by "
+ f"generating a single patch file that I can apply directly to this repository "
+ f"using git apply. Please respond with a single patch "
+ f"file in the following format."
)
prompt = "\n".join([
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str
])
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt,
response_model = str,
)
return answer_prediction
def llm_on_preprocessed_data(dataset):
problem_statement = dataset[0]['problem_statement']
prompt = dataset[0]["text"]
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt, # TODO check if this is correct
response_model = str,
)
return answer_prediction
async def main():
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench', split='test')
swe_dataset_preprocessed = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
test_data = swe_dataset[:1]
test_data_preprocessed = swe_dataset_preprocessed[:1]
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
from datasets import Dataset
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(test_data, filepath)
llm_output_with_cognee = await cognee_and_llm(dataset)
llm_output_without_cognee = llm_on_preprocessed_data(test_data_preprocessed)
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)