Running inference with and without cognee
This commit is contained in:
parent
d0fcd25826
commit
094ba7233e
1 changed files with 81 additions and 0 deletions
81
evals/eval_swe_bench.py
Normal file
81
evals/eval_swe_bench.py
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
from swebench.harness.utils import load_swebench_dataset
|
||||
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
||||
from evals.eval_utils import download_instances
|
||||
import cognee
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
||||
from cognee.api.v1.search import SearchType
|
||||
import os
|
||||
from pathlib import Path
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.shared.data_models import Answer
|
||||
|
||||
async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata = True)
|
||||
|
||||
dataset_name = "SWE_test_data"
|
||||
code_text = dataset[0]["text"][:100000]
|
||||
await cognee.add([code_text], dataset_name)
|
||||
await cognee.cognify([dataset_name])
|
||||
graph_engine = await get_graph_engine()
|
||||
with open(graph_engine.filename, "r") as f:
|
||||
graph_str = f.read()
|
||||
|
||||
problem_statement = dataset[0]['problem_statement']
|
||||
instructions = (
|
||||
f"I need you to solve this issue by looking at the provided knowledge graph and by "
|
||||
+ f"generating a single patch file that I can apply directly to this repository "
|
||||
+ f"using git apply. Please respond with a single patch "
|
||||
+ f"file in the following format."
|
||||
)
|
||||
|
||||
prompt = "\n".join([
|
||||
instructions,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str
|
||||
])
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = llm_client.create_structured_output(
|
||||
text_input = problem_statement,
|
||||
system_prompt = prompt,
|
||||
response_model = str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
def llm_on_preprocessed_data(dataset):
|
||||
problem_statement = dataset[0]['problem_statement']
|
||||
prompt = dataset[0]["text"]
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = llm_client.create_structured_output(
|
||||
text_input = problem_statement,
|
||||
system_prompt = prompt, # TODO check if this is correct
|
||||
response_model = str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def main():
|
||||
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench', split='test')
|
||||
swe_dataset_preprocessed = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
test_data = swe_dataset[:1]
|
||||
test_data_preprocessed = swe_dataset_preprocessed[:1]
|
||||
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
|
||||
filepath = Path("SWE-bench_testsample")
|
||||
if filepath.exists():
|
||||
from datasets import Dataset
|
||||
dataset = Dataset.load_from_disk(filepath)
|
||||
else:
|
||||
dataset = download_instances(test_data, filepath)
|
||||
|
||||
llm_output_with_cognee = await cognee_and_llm(dataset)
|
||||
llm_output_without_cognee = llm_on_preprocessed_data(test_data_preprocessed)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(main(), debug=True)
|
||||
Loading…
Add table
Reference in a new issue