Merge branch 'dev' into feature/cog-3645-enable-multi-user-support-for-pgvector
This commit is contained in:
commit
05084e6779
12 changed files with 157 additions and 47 deletions
10
CLAUDE.md
10
CLAUDE.md
|
|
@ -427,10 +427,12 @@ git checkout -b feature/your-feature-name
|
|||
|
||||
## Code Style
|
||||
|
||||
- Ruff for linting and formatting (configured in `pyproject.toml`)
|
||||
- Line length: 100 characters
|
||||
- Pre-commit hooks run ruff automatically
|
||||
- Type hints encouraged (mypy checks enabled)
|
||||
- **Formatter**: Ruff (configured in `pyproject.toml`)
|
||||
- **Line length**: 100 characters
|
||||
- **String quotes**: Use double quotes `"` not single quotes `'` (enforced by ruff-format)
|
||||
- **Pre-commit hooks**: Run ruff linting and formatting automatically
|
||||
- **Type hints**: Encouraged (mypy checks enabled)
|
||||
- **Important**: Always run `pre-commit run --all-files` before committing to catch formatting issues
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
|
|
|
|||
|
|
@ -252,7 +252,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
chunk_size: int = None,
|
||||
config: Config = None,
|
||||
custom_prompt: Optional[str] = None,
|
||||
chunks_per_batch: int = 100,
|
||||
chunks_per_batch: int = None,
|
||||
**kwargs,
|
||||
) -> list[Task]:
|
||||
if config is None:
|
||||
|
|
@ -272,12 +272,14 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
"ontology_config": {"ontology_resolver": get_default_ontology_resolver()}
|
||||
}
|
||||
|
||||
if chunks_per_batch is None:
|
||||
chunks_per_batch = 100
|
||||
|
||||
cognify_config = get_cognify_config()
|
||||
embed_triplets = cognify_config.triplet_embedding
|
||||
|
||||
if chunks_per_batch is None:
|
||||
chunks_per_batch = (
|
||||
cognify_config.chunks_per_batch if cognify_config.chunks_per_batch is not None else 100
|
||||
)
|
||||
|
||||
default_tasks = [
|
||||
Task(classify_documents),
|
||||
Task(
|
||||
|
|
@ -308,7 +310,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
|
||||
|
||||
async def get_temporal_tasks(
|
||||
user: User = None, chunker=TextChunker, chunk_size: int = None, chunks_per_batch: int = 10
|
||||
user: User = None, chunker=TextChunker, chunk_size: int = None, chunks_per_batch: int = None
|
||||
) -> list[Task]:
|
||||
"""
|
||||
Builds and returns a list of temporal processing tasks to be executed in sequence.
|
||||
|
|
@ -330,7 +332,10 @@ async def get_temporal_tasks(
|
|||
list[Task]: A list of Task objects representing the temporal processing pipeline.
|
||||
"""
|
||||
if chunks_per_batch is None:
|
||||
chunks_per_batch = 10
|
||||
from cognee.modules.cognify.config import get_cognify_config
|
||||
|
||||
configured = get_cognify_config().chunks_per_batch
|
||||
chunks_per_batch = configured if configured is not None else 10
|
||||
|
||||
temporal_tasks = [
|
||||
Task(classify_documents),
|
||||
|
|
|
|||
|
|
@ -46,6 +46,11 @@ class CognifyPayloadDTO(InDTO):
|
|||
examples=[[]],
|
||||
description="Reference to one or more previously uploaded ontologies",
|
||||
)
|
||||
chunks_per_batch: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Number of chunks to process per task batch in Cognify (overrides default).",
|
||||
examples=[10, 20, 50, 100],
|
||||
)
|
||||
|
||||
|
||||
def get_cognify_router() -> APIRouter:
|
||||
|
|
@ -146,6 +151,7 @@ def get_cognify_router() -> APIRouter:
|
|||
config=config_to_use,
|
||||
run_in_background=payload.run_in_background,
|
||||
custom_prompt=payload.custom_prompt,
|
||||
chunks_per_batch=payload.chunks_per_batch,
|
||||
)
|
||||
|
||||
# If any cognify run errored return JSONResponse with proper error status code
|
||||
|
|
|
|||
|
|
@ -62,6 +62,11 @@ After successful cognify processing, use `cognee search` to query the knowledge
|
|||
parser.add_argument(
|
||||
"--verbose", "-v", action="store_true", help="Show detailed progress information"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunks-per-batch",
|
||||
type=int,
|
||||
help="Number of chunks to process per task batch (try 50 for large single documents).",
|
||||
)
|
||||
|
||||
def execute(self, args: argparse.Namespace) -> None:
|
||||
try:
|
||||
|
|
@ -111,6 +116,7 @@ After successful cognify processing, use `cognee search` to query the knowledge
|
|||
chunk_size=args.chunk_size,
|
||||
ontology_file_path=args.ontology_file,
|
||||
run_in_background=args.background,
|
||||
chunks_per_batch=getattr(args, "chunks_per_batch", None),
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
|
|
|
|||
|
|
@ -24,7 +24,6 @@ async def get_graph_engine() -> GraphDBInterface:
|
|||
return graph_client
|
||||
|
||||
|
||||
@lru_cache
|
||||
def create_graph_engine(
|
||||
graph_database_provider,
|
||||
graph_file_path,
|
||||
|
|
@ -35,6 +34,35 @@ def create_graph_engine(
|
|||
graph_database_port="",
|
||||
graph_database_key="",
|
||||
graph_dataset_database_handler="",
|
||||
):
|
||||
"""
|
||||
Wrapper function to call create graph engine with caching.
|
||||
For a detailed description, see _create_graph_engine.
|
||||
"""
|
||||
return _create_graph_engine(
|
||||
graph_database_provider,
|
||||
graph_file_path,
|
||||
graph_database_url,
|
||||
graph_database_name,
|
||||
graph_database_username,
|
||||
graph_database_password,
|
||||
graph_database_port,
|
||||
graph_database_key,
|
||||
graph_dataset_database_handler,
|
||||
)
|
||||
|
||||
|
||||
@lru_cache
|
||||
def _create_graph_engine(
|
||||
graph_database_provider,
|
||||
graph_file_path,
|
||||
graph_database_url="",
|
||||
graph_database_name="",
|
||||
graph_database_username="",
|
||||
graph_database_password="",
|
||||
graph_database_port="",
|
||||
graph_database_key="",
|
||||
graph_dataset_database_handler="",
|
||||
):
|
||||
"""
|
||||
Create a graph engine based on the specified provider type.
|
||||
|
|
|
|||
|
|
@ -1,11 +1,13 @@
|
|||
import os
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import requests
|
||||
import base64
|
||||
import hashlib
|
||||
from uuid import UUID
|
||||
from typing import Optional
|
||||
from urllib.parse import urlparse
|
||||
from cryptography.fernet import Fernet
|
||||
from aiohttp import BasicAuth
|
||||
|
||||
from cognee.infrastructure.databases.graph import get_graph_config
|
||||
from cognee.modules.users.models import User, DatasetDatabase
|
||||
|
|
@ -23,7 +25,6 @@ class Neo4jAuraDevDatasetDatabaseHandler(DatasetDatabaseHandlerInterface):
|
|||
|
||||
Quality of life improvements:
|
||||
- Allow configuration of different Neo4j Aura plans and regions.
|
||||
- Requests should be made async, currently a blocking requests library is used.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
|
|
@ -49,6 +50,7 @@ class Neo4jAuraDevDatasetDatabaseHandler(DatasetDatabaseHandlerInterface):
|
|||
graph_db_name = f"{dataset_id}"
|
||||
|
||||
# Client credentials and encryption
|
||||
# Note: Should not be used as class variables so that they are not persisted in memory longer than needed
|
||||
client_id = os.environ.get("NEO4J_CLIENT_ID", None)
|
||||
client_secret = os.environ.get("NEO4J_CLIENT_SECRET", None)
|
||||
tenant_id = os.environ.get("NEO4J_TENANT_ID", None)
|
||||
|
|
@ -63,22 +65,13 @@ class Neo4jAuraDevDatasetDatabaseHandler(DatasetDatabaseHandlerInterface):
|
|||
"NEO4J_CLIENT_ID, NEO4J_CLIENT_SECRET, and NEO4J_TENANT_ID environment variables must be set to use Neo4j Aura DatasetDatabase Handling."
|
||||
)
|
||||
|
||||
# Make the request with HTTP Basic Auth
|
||||
def get_aura_token(client_id: str, client_secret: str) -> dict:
|
||||
url = "https://api.neo4j.io/oauth/token"
|
||||
data = {"grant_type": "client_credentials"} # sent as application/x-www-form-urlencoded
|
||||
|
||||
resp = requests.post(url, data=data, auth=(client_id, client_secret))
|
||||
resp.raise_for_status() # raises if the request failed
|
||||
return resp.json()
|
||||
|
||||
resp = get_aura_token(client_id, client_secret)
|
||||
resp_token = await cls._get_aura_token(client_id, client_secret)
|
||||
|
||||
url = "https://api.neo4j.io/v1/instances"
|
||||
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"Authorization": f"Bearer {resp['access_token']}",
|
||||
"Authorization": f"Bearer {resp_token['access_token']}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
|
|
@ -96,31 +89,38 @@ class Neo4jAuraDevDatasetDatabaseHandler(DatasetDatabaseHandlerInterface):
|
|||
"cloud_provider": "gcp",
|
||||
}
|
||||
|
||||
response = requests.post(url, headers=headers, json=payload)
|
||||
async def _create_database_instance_request():
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(url, headers=headers, json=payload) as resp:
|
||||
resp.raise_for_status()
|
||||
return await resp.json()
|
||||
|
||||
resp_create = await _create_database_instance_request()
|
||||
|
||||
graph_db_name = "neo4j" # Has to be 'neo4j' for Aura
|
||||
graph_db_url = response.json()["data"]["connection_url"]
|
||||
graph_db_key = resp["access_token"]
|
||||
graph_db_username = response.json()["data"]["username"]
|
||||
graph_db_password = response.json()["data"]["password"]
|
||||
graph_db_url = resp_create["data"]["connection_url"]
|
||||
graph_db_key = resp_token["access_token"]
|
||||
graph_db_username = resp_create["data"]["username"]
|
||||
graph_db_password = resp_create["data"]["password"]
|
||||
|
||||
async def _wait_for_neo4j_instance_provisioning(instance_id: str, headers: dict):
|
||||
# Poll until the instance is running
|
||||
status_url = f"https://api.neo4j.io/v1/instances/{instance_id}"
|
||||
status = ""
|
||||
for attempt in range(30): # Try for up to ~5 minutes
|
||||
status_resp = requests.get(
|
||||
status_url, headers=headers
|
||||
) # TODO: Use async requests with httpx
|
||||
status = status_resp.json()["data"]["status"]
|
||||
if status.lower() == "running":
|
||||
return
|
||||
await asyncio.sleep(10)
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(status_url, headers=headers) as resp:
|
||||
resp.raise_for_status()
|
||||
status_resp = await resp.json()
|
||||
status = status_resp["data"]["status"]
|
||||
if status.lower() == "running":
|
||||
return
|
||||
await asyncio.sleep(10)
|
||||
raise TimeoutError(
|
||||
f"Neo4j instance '{graph_db_name}' did not become ready within 5 minutes. Status: {status}"
|
||||
)
|
||||
|
||||
instance_id = response.json()["data"]["id"]
|
||||
instance_id = resp_create["data"]["id"]
|
||||
await _wait_for_neo4j_instance_provisioning(instance_id, headers)
|
||||
|
||||
encrypted_db_password_bytes = cipher.encrypt(graph_db_password.encode())
|
||||
|
|
@ -165,4 +165,39 @@ class Neo4jAuraDevDatasetDatabaseHandler(DatasetDatabaseHandlerInterface):
|
|||
|
||||
@classmethod
|
||||
async def delete_dataset(cls, dataset_database: DatasetDatabase):
|
||||
pass
|
||||
# Get dataset database information and credentials
|
||||
dataset_database = await cls.resolve_dataset_connection_info(dataset_database)
|
||||
|
||||
parsed_url = urlparse(dataset_database.graph_database_url)
|
||||
instance_id = parsed_url.hostname.split(".")[0]
|
||||
|
||||
url = f"https://api.neo4j.io/v1/instances/{instance_id}"
|
||||
|
||||
# Get access token for Neo4j Aura API
|
||||
# Client credentials
|
||||
client_id = os.environ.get("NEO4J_CLIENT_ID", None)
|
||||
client_secret = os.environ.get("NEO4J_CLIENT_SECRET", None)
|
||||
resp = await cls._get_aura_token(client_id, client_secret)
|
||||
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"Authorization": f"Bearer {resp['access_token']}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.delete(url, headers=headers) as resp:
|
||||
resp.raise_for_status()
|
||||
return await resp.json()
|
||||
|
||||
@classmethod
|
||||
async def _get_aura_token(cls, client_id: str, client_secret: str) -> dict:
|
||||
url = "https://api.neo4j.io/oauth/token"
|
||||
data = {"grant_type": "client_credentials"} # sent as application/x-www-form-urlencoded
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(
|
||||
url, data=data, auth=BasicAuth(client_id, client_secret)
|
||||
) as resp:
|
||||
resp.raise_for_status()
|
||||
return await resp.json()
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ from cognee.infrastructure.databases.graph.config import get_graph_context_confi
|
|||
from functools import lru_cache
|
||||
|
||||
|
||||
@lru_cache
|
||||
def create_vector_engine(
|
||||
vector_db_provider: str,
|
||||
vector_db_url: str,
|
||||
|
|
@ -17,6 +16,29 @@ def create_vector_engine(
|
|||
vector_dataset_database_handler: str = "",
|
||||
vector_db_username: str = "",
|
||||
vector_db_password: str = "",
|
||||
):
|
||||
"""
|
||||
Wrapper function to call create vector engine with caching.
|
||||
For a detailed description, see _create_vector_engine.
|
||||
"""
|
||||
return _create_vector_engine(
|
||||
vector_db_provider,
|
||||
vector_db_url,
|
||||
vector_db_name,
|
||||
vector_db_port,
|
||||
vector_db_key,
|
||||
vector_dataset_database_handler,
|
||||
)
|
||||
|
||||
|
||||
@lru_cache
|
||||
def _create_vector_engine(
|
||||
vector_db_provider: str,
|
||||
vector_db_url: str,
|
||||
vector_db_name: str,
|
||||
vector_db_port: str = "",
|
||||
vector_db_key: str = "",
|
||||
vector_dataset_database_handler: str = "",
|
||||
):
|
||||
"""
|
||||
Create a vector database engine based on the specified provider.
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ class CognifyConfig(BaseSettings):
|
|||
classification_model: object = DefaultContentPrediction
|
||||
summarization_model: object = SummarizedContent
|
||||
triplet_embedding: bool = False
|
||||
chunks_per_batch: Optional[int] = None
|
||||
model_config = SettingsConfigDict(env_file=".env", extra="allow")
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
|
|
@ -16,6 +17,7 @@ class CognifyConfig(BaseSettings):
|
|||
"classification_model": self.classification_model,
|
||||
"summarization_model": self.summarization_model,
|
||||
"triplet_embedding": self.triplet_embedding,
|
||||
"chunks_per_batch": self.chunks_per_batch,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -238,6 +238,7 @@ class TestCognifyCommand:
|
|||
ontology_file_path=None,
|
||||
chunker=TextChunker,
|
||||
run_in_background=False,
|
||||
chunks_per_batch=None,
|
||||
)
|
||||
|
||||
@patch("cognee.cli.commands.cognify_command.asyncio.run")
|
||||
|
|
|
|||
|
|
@ -262,6 +262,7 @@ class TestCognifyCommandEdgeCases:
|
|||
ontology_file_path=None,
|
||||
chunker=TextChunker,
|
||||
run_in_background=False,
|
||||
chunks_per_batch=None,
|
||||
)
|
||||
|
||||
@patch("cognee.cli.commands.cognify_command.asyncio.run", side_effect=_mock_run)
|
||||
|
|
@ -295,6 +296,7 @@ class TestCognifyCommandEdgeCases:
|
|||
ontology_file_path="/nonexistent/path/ontology.owl",
|
||||
chunker=TextChunker,
|
||||
run_in_background=False,
|
||||
chunks_per_batch=None,
|
||||
)
|
||||
|
||||
@patch("cognee.cli.commands.cognify_command.asyncio.run")
|
||||
|
|
@ -373,6 +375,7 @@ class TestCognifyCommandEdgeCases:
|
|||
ontology_file_path=None,
|
||||
chunker=TextChunker,
|
||||
run_in_background=False,
|
||||
chunks_per_batch=None,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -41,14 +41,14 @@ async def _reset_engines_and_prune() -> None:
|
|||
except Exception:
|
||||
pass
|
||||
|
||||
from cognee.infrastructure.databases.graph.get_graph_engine import create_graph_engine
|
||||
from cognee.infrastructure.databases.relational.create_relational_engine import (
|
||||
create_relational_engine,
|
||||
)
|
||||
from cognee.infrastructure.databases.vector.create_vector_engine import create_vector_engine
|
||||
from cognee.infrastructure.databases.vector.create_vector_engine import _create_vector_engine
|
||||
from cognee.infrastructure.databases.graph.get_graph_engine import _create_graph_engine
|
||||
|
||||
create_graph_engine.cache_clear()
|
||||
create_vector_engine.cache_clear()
|
||||
_create_graph_engine.cache_clear()
|
||||
_create_vector_engine.cache_clear()
|
||||
create_relational_engine.cache_clear()
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
|
|
|
|||
|
|
@ -48,14 +48,14 @@ async def _reset_engines_and_prune() -> None:
|
|||
# Engine might not exist yet
|
||||
pass
|
||||
|
||||
from cognee.infrastructure.databases.graph.get_graph_engine import create_graph_engine
|
||||
from cognee.infrastructure.databases.vector.create_vector_engine import create_vector_engine
|
||||
from cognee.infrastructure.databases.graph.get_graph_engine import _create_graph_engine
|
||||
from cognee.infrastructure.databases.vector.create_vector_engine import _create_vector_engine
|
||||
from cognee.infrastructure.databases.relational.create_relational_engine import (
|
||||
create_relational_engine,
|
||||
)
|
||||
|
||||
create_graph_engine.cache_clear()
|
||||
create_vector_engine.cache_clear()
|
||||
_create_graph_engine.cache_clear()
|
||||
_create_vector_engine.cache_clear()
|
||||
create_relational_engine.cache_clear()
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue