LightRAG/lightrag/llm
yangdx ecd7777e61 Update OpenAI embedding handling for both list and base64 embeddings
- Fix OpenAI embedding array parsing
- Improve embedding data type safety
2025-08-09 08:40:33 +08:00
..
__init__.py Separated llms from the main llm.py file and fixed some deprication bugs 2025-01-25 00:11:00 +01:00
anthropic.py Update webui assets 2025-03-22 00:36:38 +08:00
azure_openai.py refactor: improve JSON parsing reliability with json-repair library 2025-08-01 19:36:20 +08:00
bedrock.py refactor: improve JSON parsing reliability with json-repair library 2025-08-01 19:36:20 +08:00
binding_options.py feat: Add OpenAI LLM Options support with BindingOptions framework 2025-08-05 03:47:26 +08:00
hf.py refactor: improve JSON parsing reliability with json-repair library 2025-08-01 19:36:20 +08:00
jina.py feat: improve Jina API error handling to show clean messages instead of HTML 2025-08-05 11:46:02 +08:00
llama_index_impl.py refactor: improve JSON parsing reliability with json-repair library 2025-08-01 19:36:20 +08:00
lmdeploy.py Eliminate tenacity from dynamic import 2025-05-14 10:57:05 +08:00
lollms.py Set the default LLM temperature to 1.0 and centralize constant management 2025-07-31 17:15:10 +08:00
nvidia_openai.py refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00
ollama.py fix timeout issue 2025-07-29 13:38:46 +07:00
openai.py Update OpenAI embedding handling for both list and base64 embeddings 2025-08-09 08:40:33 +08:00
Readme.md refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00
siliconcloud.py refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00
zhipu.py refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00

  1. LlamaIndex (llm/llama_index.py):
    • Provides integration with OpenAI and other providers through LlamaIndex
    • Supports both direct API access and proxy services like LiteLLM
    • Handles embeddings and completions with consistent interfaces
    • See example implementations:
Using LlamaIndex

LightRAG supports LlamaIndex for embeddings and completions in two ways: direct OpenAI usage or through LiteLLM proxy.

Setup

First, install the required dependencies:

pip install llama-index-llms-litellm llama-index-embeddings-litellm

Standard OpenAI Usage

from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from lightrag.utils import EmbeddingFunc

# Initialize with direct OpenAI access
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize OpenAI if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = OpenAI(
                model="gpt-4",
                api_key="your-openai-key",
                temperature=0.7,
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with OpenAI
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=OpenAIEmbedding(
                model="text-embedding-3-large",
                api_key="your-openai-key"
            )
        ),
    ),
)

Using LiteLLM Proxy

  1. Use any LLM provider through LiteLLM
  2. Leverage LlamaIndex's embedding and completion capabilities
  3. Maintain consistent configuration across services
from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.llms.litellm import LiteLLM
from llama_index.embeddings.litellm import LiteLLMEmbedding
from lightrag.utils import EmbeddingFunc

# Initialize with LiteLLM proxy
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize LiteLLM if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = LiteLLM(
                model=f"openai/{settings.LLM_MODEL}",  # Format: "provider/model_name"
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
                temperature=0.7,
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with LiteLLM
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=LiteLLMEmbedding(
                model_name=f"openai/{settings.EMBEDDING_MODEL}",
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
            )
        ),
    ),
)

Environment Variables

For OpenAI direct usage:

OPENAI_API_KEY=your-openai-key

For LiteLLM proxy:

# LiteLLM Configuration
LITELLM_URL=http://litellm:4000
LITELLM_KEY=your-litellm-key

# Model Configuration
LLM_MODEL=gpt-4
EMBEDDING_MODEL=text-embedding-3-large

Key Differences

  1. Direct OpenAI:

    • Simpler setup
    • Direct API access
    • Requires OpenAI API key
  2. LiteLLM Proxy:

    • Model provider agnostic
    • Centralized API key management
    • Support for multiple providers
    • Better cost control and monitoring