- Split LLM and embedding API configs - Add fallback chain for API keys - Update docs with usage examples
1016 lines
39 KiB
Python
1016 lines
39 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
RAGAS Evaluation Script for LightRAG System
|
|
|
|
Evaluates RAG response quality using RAGAS metrics:
|
|
- Faithfulness: Is the answer factually accurate based on context?
|
|
- Answer Relevance: Is the answer relevant to the question?
|
|
- Context Recall: Is all relevant information retrieved?
|
|
- Context Precision: Is retrieved context clean without noise?
|
|
|
|
Usage:
|
|
# Use defaults (sample_dataset.json, http://localhost:9621)
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
|
|
# Specify custom dataset
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json
|
|
|
|
# Specify custom RAG endpoint
|
|
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
|
python lightrag/evaluation/eval_rag_quality.py -r http://my-server.com:9621
|
|
|
|
# Specify both
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
|
|
# Get help
|
|
python lightrag/evaluation/eval_rag_quality.py --help
|
|
|
|
Results are saved to: lightrag/evaluation/results/
|
|
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
|
|
- results_YYYYMMDD_HHMMSS.json (Full results with details)
|
|
|
|
Technical Notes:
|
|
- Uses stable RAGAS API (LangchainLLMWrapper) for maximum compatibility
|
|
- Supports custom OpenAI-compatible endpoints via EVAL_LLM_BINDING_HOST
|
|
- Enables bypass_n mode for endpoints that don't support 'n' parameter
|
|
- Deprecation warnings are suppressed for cleaner output
|
|
"""
|
|
|
|
import argparse
|
|
import asyncio
|
|
import csv
|
|
import json
|
|
import math
|
|
import os
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List
|
|
|
|
import httpx
|
|
from dotenv import load_dotenv
|
|
from lightrag.utils import logger
|
|
|
|
# Suppress LangchainLLMWrapper deprecation warning
|
|
# We use LangchainLLMWrapper for stability and compatibility with all RAGAS versions
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message=".*LangchainLLMWrapper is deprecated.*",
|
|
category=DeprecationWarning,
|
|
)
|
|
|
|
# Suppress token usage warning for custom OpenAI-compatible endpoints
|
|
# Custom endpoints (vLLM, SGLang, etc.) often don't return usage information
|
|
# This is non-critical as token tracking is not required for RAGAS evaluation
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message=".*Unexpected type for token usage.*",
|
|
category=UserWarning,
|
|
)
|
|
|
|
# Add parent directory to path
|
|
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
|
|
|
# use the .env that is inside the current folder
|
|
# allows to use different .env file for each lightrag instance
|
|
# the OS environment variables take precedence over the .env file
|
|
load_dotenv(dotenv_path=".env", override=False)
|
|
|
|
# Conditional imports - will raise ImportError if dependencies not installed
|
|
try:
|
|
from datasets import Dataset
|
|
from ragas import evaluate
|
|
from ragas.metrics import (
|
|
AnswerRelevancy,
|
|
ContextPrecision,
|
|
ContextRecall,
|
|
Faithfulness,
|
|
)
|
|
from ragas.llms import LangchainLLMWrapper
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
from tqdm.auto import tqdm
|
|
|
|
RAGAS_AVAILABLE = True
|
|
|
|
except ImportError:
|
|
RAGAS_AVAILABLE = False
|
|
Dataset = None
|
|
evaluate = None
|
|
LangchainLLMWrapper = None
|
|
|
|
|
|
CONNECT_TIMEOUT_SECONDS = 180.0
|
|
READ_TIMEOUT_SECONDS = 300.0
|
|
TOTAL_TIMEOUT_SECONDS = 180.0
|
|
|
|
|
|
def _is_nan(value: Any) -> bool:
|
|
"""Return True when value is a float NaN."""
|
|
return isinstance(value, float) and math.isnan(value)
|
|
|
|
|
|
class RAGEvaluator:
|
|
"""Evaluate RAG system quality using RAGAS metrics"""
|
|
|
|
def __init__(self, test_dataset_path: str = None, rag_api_url: str = None):
|
|
"""
|
|
Initialize evaluator with test dataset
|
|
|
|
Args:
|
|
test_dataset_path: Path to test dataset JSON file
|
|
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
|
|
If None, will try to read from environment or use default
|
|
|
|
Environment Variables:
|
|
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
|
|
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
|
|
EVAL_LLM_BINDING_API_KEY: API key for LLM (fallback to OPENAI_API_KEY)
|
|
EVAL_LLM_BINDING_HOST: Custom endpoint URL for LLM (optional)
|
|
EVAL_EMBEDDING_BINDING_API_KEY: API key for embeddings (fallback: EVAL_LLM_BINDING_API_KEY -> OPENAI_API_KEY)
|
|
EVAL_EMBEDDING_BINDING_HOST: Custom endpoint URL for embeddings (fallback: EVAL_LLM_BINDING_HOST)
|
|
|
|
Raises:
|
|
ImportError: If ragas or datasets packages are not installed
|
|
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
|
|
"""
|
|
# Validate RAGAS dependencies are installed
|
|
if not RAGAS_AVAILABLE:
|
|
raise ImportError(
|
|
"RAGAS dependencies not installed. "
|
|
"Install with: pip install ragas datasets"
|
|
)
|
|
|
|
# Configure evaluation LLM (for RAGAS scoring)
|
|
eval_llm_api_key = os.getenv("EVAL_LLM_BINDING_API_KEY") or os.getenv(
|
|
"OPENAI_API_KEY"
|
|
)
|
|
if not eval_llm_api_key:
|
|
raise EnvironmentError(
|
|
"EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. "
|
|
"Set EVAL_LLM_BINDING_API_KEY to use a custom API key, "
|
|
"or ensure OPENAI_API_KEY is set."
|
|
)
|
|
|
|
eval_model = os.getenv("EVAL_LLM_MODEL", "gpt-4o-mini")
|
|
eval_llm_base_url = os.getenv("EVAL_LLM_BINDING_HOST")
|
|
|
|
# Configure evaluation embeddings (for RAGAS scoring)
|
|
# Fallback chain: EVAL_EMBEDDING_BINDING_API_KEY -> EVAL_LLM_BINDING_API_KEY -> OPENAI_API_KEY
|
|
eval_embedding_api_key = (
|
|
os.getenv("EVAL_EMBEDDING_BINDING_API_KEY")
|
|
or os.getenv("EVAL_LLM_BINDING_API_KEY")
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
eval_embedding_model = os.getenv(
|
|
"EVAL_EMBEDDING_MODEL", "text-embedding-3-large"
|
|
)
|
|
# Fallback chain: EVAL_EMBEDDING_BINDING_HOST -> EVAL_LLM_BINDING_HOST -> None
|
|
eval_embedding_base_url = os.getenv("EVAL_EMBEDDING_BINDING_HOST") or os.getenv(
|
|
"EVAL_LLM_BINDING_HOST"
|
|
)
|
|
|
|
# Create LLM and Embeddings instances for RAGAS
|
|
llm_kwargs = {
|
|
"model": eval_model,
|
|
"api_key": eval_llm_api_key,
|
|
"max_retries": int(os.getenv("EVAL_LLM_MAX_RETRIES", "5")),
|
|
"request_timeout": int(os.getenv("EVAL_LLM_TIMEOUT", "180")),
|
|
}
|
|
embedding_kwargs = {
|
|
"model": eval_embedding_model,
|
|
"api_key": eval_embedding_api_key,
|
|
}
|
|
|
|
if eval_llm_base_url:
|
|
llm_kwargs["base_url"] = eval_llm_base_url
|
|
|
|
if eval_embedding_base_url:
|
|
embedding_kwargs["base_url"] = eval_embedding_base_url
|
|
|
|
# Create base LangChain LLM
|
|
base_llm = ChatOpenAI(**llm_kwargs)
|
|
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
|
|
|
|
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
|
|
# This ensures compatibility with endpoints that don't support the 'n' parameter
|
|
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
|
|
try:
|
|
self.eval_llm = LangchainLLMWrapper(
|
|
langchain_llm=base_llm,
|
|
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
|
|
)
|
|
logger.debug("Successfully configured bypass_n mode for LLM wrapper")
|
|
except Exception as e:
|
|
logger.warning(
|
|
"Could not configure LangchainLLMWrapper with bypass_n: %s. "
|
|
"Using base LLM directly, which may cause warnings with custom endpoints.",
|
|
e,
|
|
)
|
|
self.eval_llm = base_llm
|
|
|
|
if test_dataset_path is None:
|
|
test_dataset_path = Path(__file__).parent / "sample_dataset.json"
|
|
|
|
if rag_api_url is None:
|
|
rag_api_url = os.getenv("LIGHTRAG_API_URL", "http://localhost:9621")
|
|
|
|
self.test_dataset_path = Path(test_dataset_path)
|
|
self.rag_api_url = rag_api_url.rstrip("/")
|
|
self.results_dir = Path(__file__).parent / "results"
|
|
self.results_dir.mkdir(exist_ok=True)
|
|
|
|
# Load test dataset
|
|
self.test_cases = self._load_test_dataset()
|
|
|
|
# Store configuration values for display
|
|
self.eval_model = eval_model
|
|
self.eval_embedding_model = eval_embedding_model
|
|
self.eval_llm_base_url = eval_llm_base_url
|
|
self.eval_embedding_base_url = eval_embedding_base_url
|
|
self.eval_max_retries = llm_kwargs["max_retries"]
|
|
self.eval_timeout = llm_kwargs["request_timeout"]
|
|
|
|
# Display configuration
|
|
self._display_configuration()
|
|
|
|
def _display_configuration(self):
|
|
"""Display all evaluation configuration settings"""
|
|
logger.info("Evaluation Models:")
|
|
logger.info(" • LLM Model: %s", self.eval_model)
|
|
logger.info(" • Embedding Model: %s", self.eval_embedding_model)
|
|
|
|
# Display LLM endpoint
|
|
if self.eval_llm_base_url:
|
|
logger.info(" • LLM Endpoint: %s", self.eval_llm_base_url)
|
|
logger.info(
|
|
" • Bypass N-Parameter: Enabled (use LangchainLLMWrapper for compatibility)"
|
|
)
|
|
else:
|
|
logger.info(" • LLM Endpoint: OpenAI Official API")
|
|
|
|
# Display Embedding endpoint (only if different from LLM)
|
|
if self.eval_embedding_base_url:
|
|
if self.eval_embedding_base_url != self.eval_llm_base_url:
|
|
logger.info(
|
|
" • Embedding Endpoint: %s", self.eval_embedding_base_url
|
|
)
|
|
# If same as LLM endpoint, no need to display separately
|
|
elif not self.eval_llm_base_url:
|
|
# Both using OpenAI - already displayed above
|
|
pass
|
|
else:
|
|
# LLM uses custom endpoint, but embeddings use OpenAI
|
|
logger.info(" • Embedding Endpoint: OpenAI Official API")
|
|
|
|
logger.info("Concurrency & Rate Limiting:")
|
|
query_top_k = int(os.getenv("EVAL_QUERY_TOP_K", "10"))
|
|
logger.info(" • Query Top-K: %s Entities/Relations", query_top_k)
|
|
logger.info(" • LLM Max Retries: %s", self.eval_max_retries)
|
|
logger.info(" • LLM Timeout: %s seconds", self.eval_timeout)
|
|
|
|
logger.info("Test Configuration:")
|
|
logger.info(" • Total Test Cases: %s", len(self.test_cases))
|
|
logger.info(" • Test Dataset: %s", self.test_dataset_path.name)
|
|
logger.info(" • LightRAG API: %s", self.rag_api_url)
|
|
logger.info(" • Results Directory: %s", self.results_dir.name)
|
|
|
|
def _load_test_dataset(self) -> List[Dict[str, str]]:
|
|
"""Load test cases from JSON file"""
|
|
if not self.test_dataset_path.exists():
|
|
raise FileNotFoundError(f"Test dataset not found: {self.test_dataset_path}")
|
|
|
|
with open(self.test_dataset_path) as f:
|
|
data = json.load(f)
|
|
|
|
return data.get("test_cases", [])
|
|
|
|
async def generate_rag_response(
|
|
self,
|
|
question: str,
|
|
client: httpx.AsyncClient,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Generate RAG response by calling LightRAG API.
|
|
|
|
Args:
|
|
question: The user query.
|
|
client: Shared httpx AsyncClient for connection pooling.
|
|
|
|
Returns:
|
|
Dictionary with 'answer' and 'contexts' keys.
|
|
'contexts' is a list of strings (one per retrieved document).
|
|
|
|
Raises:
|
|
Exception: If LightRAG API is unavailable.
|
|
"""
|
|
try:
|
|
payload = {
|
|
"query": question,
|
|
"mode": "mix",
|
|
"include_references": True,
|
|
"include_chunk_content": True, # NEW: Request chunk content in references
|
|
"response_type": "Multiple Paragraphs",
|
|
"top_k": int(os.getenv("EVAL_QUERY_TOP_K", "10")),
|
|
}
|
|
|
|
# Get API key from environment for authentication
|
|
api_key = os.getenv("LIGHTRAG_API_KEY")
|
|
|
|
# Prepare headers with optional authentication
|
|
headers = {}
|
|
if api_key:
|
|
headers["X-API-Key"] = api_key
|
|
|
|
# Single optimized API call - gets both answer AND chunk content
|
|
response = await client.post(
|
|
f"{self.rag_api_url}/query",
|
|
json=payload,
|
|
headers=headers if headers else None,
|
|
)
|
|
response.raise_for_status()
|
|
result = response.json()
|
|
|
|
answer = result.get("response", "No response generated")
|
|
references = result.get("references", [])
|
|
|
|
# DEBUG: Inspect the API response
|
|
logger.debug("🔍 References Count: %s", len(references))
|
|
if references:
|
|
first_ref = references[0]
|
|
logger.debug("🔍 First Reference Keys: %s", list(first_ref.keys()))
|
|
if "content" in first_ref:
|
|
content_preview = first_ref["content"]
|
|
if isinstance(content_preview, list) and content_preview:
|
|
logger.debug(
|
|
"🔍 Content Preview (first chunk): %s...",
|
|
content_preview[0][:100],
|
|
)
|
|
elif isinstance(content_preview, str):
|
|
logger.debug("🔍 Content Preview: %s...", content_preview[:100])
|
|
|
|
# Extract chunk content from enriched references
|
|
# Note: content is now a list of chunks per reference (one file may have multiple chunks)
|
|
contexts = []
|
|
for ref in references:
|
|
content = ref.get("content", [])
|
|
if isinstance(content, list):
|
|
# Flatten the list: each chunk becomes a separate context
|
|
contexts.extend(content)
|
|
elif isinstance(content, str):
|
|
# Backward compatibility: if content is still a string (shouldn't happen)
|
|
contexts.append(content)
|
|
|
|
return {
|
|
"answer": answer,
|
|
"contexts": contexts, # List of strings from actual retrieved chunks
|
|
}
|
|
|
|
except httpx.ConnectError as e:
|
|
raise Exception(
|
|
f"❌ Cannot connect to LightRAG API at {self.rag_api_url}\n"
|
|
f" Make sure LightRAG server is running:\n"
|
|
f" python -m lightrag.api.lightrag_server\n"
|
|
f" Error: {str(e)}"
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
raise Exception(
|
|
f"LightRAG API error {e.response.status_code}: {e.response.text}"
|
|
)
|
|
except httpx.ReadTimeout as e:
|
|
raise Exception(
|
|
f"Request timeout after waiting for response\n"
|
|
f" Question: {question[:100]}...\n"
|
|
f" Error: {str(e)}"
|
|
)
|
|
except Exception as e:
|
|
raise Exception(f"Error calling LightRAG API: {type(e).__name__}: {str(e)}")
|
|
|
|
async def evaluate_single_case(
|
|
self,
|
|
idx: int,
|
|
test_case: Dict[str, str],
|
|
rag_semaphore: asyncio.Semaphore,
|
|
eval_semaphore: asyncio.Semaphore,
|
|
client: httpx.AsyncClient,
|
|
progress_counter: Dict[str, int],
|
|
position_pool: asyncio.Queue,
|
|
pbar_creation_lock: asyncio.Lock,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Evaluate a single test case with two-stage pipeline concurrency control
|
|
|
|
Args:
|
|
idx: Test case index (1-based)
|
|
test_case: Test case dictionary with question and ground_truth
|
|
rag_semaphore: Semaphore to control overall concurrency (covers entire function)
|
|
eval_semaphore: Semaphore to control RAGAS evaluation concurrency (Stage 2)
|
|
client: Shared httpx AsyncClient for connection pooling
|
|
progress_counter: Shared dictionary for progress tracking
|
|
position_pool: Queue of available tqdm position indices
|
|
pbar_creation_lock: Lock to serialize tqdm creation and prevent race conditions
|
|
|
|
Returns:
|
|
Evaluation result dictionary
|
|
"""
|
|
# rag_semaphore controls the entire evaluation process to prevent
|
|
# all RAG responses from being generated at once when eval is slow
|
|
async with rag_semaphore:
|
|
question = test_case["question"]
|
|
ground_truth = test_case["ground_truth"]
|
|
|
|
# Stage 1: Generate RAG response
|
|
try:
|
|
rag_response = await self.generate_rag_response(
|
|
question=question, client=client
|
|
)
|
|
except Exception as e:
|
|
logger.error("Error generating response for test %s: %s", idx, str(e))
|
|
progress_counter["completed"] += 1
|
|
return {
|
|
"test_number": idx,
|
|
"question": question,
|
|
"error": str(e),
|
|
"metrics": {},
|
|
"ragas_score": 0,
|
|
"timestamp": datetime.now().isoformat(),
|
|
}
|
|
|
|
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
|
retrieved_contexts = rag_response["contexts"]
|
|
|
|
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
|
eval_dataset = Dataset.from_dict(
|
|
{
|
|
"question": [question],
|
|
"answer": [rag_response["answer"]],
|
|
"contexts": [retrieved_contexts],
|
|
"ground_truth": [ground_truth],
|
|
}
|
|
)
|
|
|
|
# Stage 2: Run RAGAS evaluation (controlled by eval_semaphore)
|
|
# IMPORTANT: Create fresh metric instances for each evaluation to avoid
|
|
# concurrent state conflicts when multiple tasks run in parallel
|
|
async with eval_semaphore:
|
|
pbar = None
|
|
position = None
|
|
try:
|
|
# Acquire a position from the pool for this tqdm progress bar
|
|
position = await position_pool.get()
|
|
|
|
# Serialize tqdm creation to prevent race conditions
|
|
# Multiple tasks creating tqdm simultaneously can cause display conflicts
|
|
async with pbar_creation_lock:
|
|
# Create tqdm progress bar with assigned position to avoid overlapping
|
|
# leave=False ensures the progress bar is cleared after completion,
|
|
# preventing accumulation of completed bars and allowing position reuse
|
|
pbar = tqdm(
|
|
total=4,
|
|
desc=f"Eval-{idx:02d}",
|
|
position=position,
|
|
leave=False,
|
|
)
|
|
# Give tqdm time to initialize and claim its screen position
|
|
await asyncio.sleep(0.05)
|
|
|
|
eval_results = evaluate(
|
|
dataset=eval_dataset,
|
|
metrics=[
|
|
Faithfulness(),
|
|
AnswerRelevancy(),
|
|
ContextRecall(),
|
|
ContextPrecision(),
|
|
],
|
|
llm=self.eval_llm,
|
|
embeddings=self.eval_embeddings,
|
|
_pbar=pbar,
|
|
)
|
|
|
|
# Convert to DataFrame (RAGAS v0.3+ API)
|
|
df = eval_results.to_pandas()
|
|
|
|
# Extract scores from first row
|
|
scores_row = df.iloc[0]
|
|
|
|
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
|
result = {
|
|
"test_number": idx,
|
|
"question": question,
|
|
"answer": rag_response["answer"][:200] + "..."
|
|
if len(rag_response["answer"]) > 200
|
|
else rag_response["answer"],
|
|
"ground_truth": ground_truth[:200] + "..."
|
|
if len(ground_truth) > 200
|
|
else ground_truth,
|
|
"project": test_case.get("project", "unknown"),
|
|
"metrics": {
|
|
"faithfulness": float(scores_row.get("faithfulness", 0)),
|
|
"answer_relevance": float(
|
|
scores_row.get("answer_relevancy", 0)
|
|
),
|
|
"context_recall": float(
|
|
scores_row.get("context_recall", 0)
|
|
),
|
|
"context_precision": float(
|
|
scores_row.get("context_precision", 0)
|
|
),
|
|
},
|
|
"timestamp": datetime.now().isoformat(),
|
|
}
|
|
|
|
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
|
metrics = result["metrics"]
|
|
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
|
ragas_score = (
|
|
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
|
)
|
|
result["ragas_score"] = round(ragas_score, 4)
|
|
|
|
# Update progress counter
|
|
progress_counter["completed"] += 1
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error("Error evaluating test %s: %s", idx, str(e))
|
|
progress_counter["completed"] += 1
|
|
return {
|
|
"test_number": idx,
|
|
"question": question,
|
|
"error": str(e),
|
|
"metrics": {},
|
|
"ragas_score": 0,
|
|
"timestamp": datetime.now().isoformat(),
|
|
}
|
|
finally:
|
|
# Force close progress bar to ensure completion
|
|
if pbar is not None:
|
|
pbar.close()
|
|
# Release the position back to the pool for reuse
|
|
if position is not None:
|
|
await position_pool.put(position)
|
|
|
|
async def evaluate_responses(self) -> List[Dict[str, Any]]:
|
|
"""
|
|
Evaluate all test cases in parallel with two-stage pipeline and return metrics
|
|
|
|
Returns:
|
|
List of evaluation results with metrics
|
|
"""
|
|
# Get evaluation concurrency from environment (default to 2 for parallel evaluation)
|
|
max_async = int(os.getenv("EVAL_MAX_CONCURRENT", "2"))
|
|
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("🚀 Starting RAGAS Evaluation of LightRAG System")
|
|
logger.info("🔧 RAGAS Evaluation (Stage 2): %s concurrent", max_async)
|
|
logger.info("%s", "=" * 70)
|
|
|
|
# Create two-stage pipeline semaphores
|
|
# Stage 1: RAG generation - allow x2 concurrency to keep evaluation fed
|
|
rag_semaphore = asyncio.Semaphore(max_async * 2)
|
|
# Stage 2: RAGAS evaluation - primary bottleneck
|
|
eval_semaphore = asyncio.Semaphore(max_async)
|
|
|
|
# Create progress counter (shared across all tasks)
|
|
progress_counter = {"completed": 0}
|
|
|
|
# Create position pool for tqdm progress bars
|
|
# Positions range from 0 to max_async-1, ensuring no overlapping displays
|
|
position_pool = asyncio.Queue()
|
|
for i in range(max_async):
|
|
await position_pool.put(i)
|
|
|
|
# Create lock to serialize tqdm creation and prevent race conditions
|
|
# This ensures progress bars are created one at a time, avoiding display conflicts
|
|
pbar_creation_lock = asyncio.Lock()
|
|
|
|
# Create shared HTTP client with connection pooling and proper timeouts
|
|
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
|
|
timeout = httpx.Timeout(
|
|
TOTAL_TIMEOUT_SECONDS,
|
|
connect=CONNECT_TIMEOUT_SECONDS,
|
|
read=READ_TIMEOUT_SECONDS,
|
|
)
|
|
limits = httpx.Limits(
|
|
max_connections=(max_async + 1) * 2, # Allow buffer for RAG stage
|
|
max_keepalive_connections=max_async + 1,
|
|
)
|
|
|
|
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
|
|
# Create tasks for all test cases
|
|
tasks = [
|
|
self.evaluate_single_case(
|
|
idx,
|
|
test_case,
|
|
rag_semaphore,
|
|
eval_semaphore,
|
|
client,
|
|
progress_counter,
|
|
position_pool,
|
|
pbar_creation_lock,
|
|
)
|
|
for idx, test_case in enumerate(self.test_cases, 1)
|
|
]
|
|
|
|
# Run all evaluations in parallel (limited by two-stage semaphores)
|
|
results = await asyncio.gather(*tasks)
|
|
|
|
return list(results)
|
|
|
|
def _export_to_csv(self, results: List[Dict[str, Any]]) -> Path:
|
|
"""
|
|
Export evaluation results to CSV file
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
|
|
Returns:
|
|
Path to the CSV file
|
|
|
|
CSV Format:
|
|
- question: The test question
|
|
- project: Project context
|
|
- faithfulness: Faithfulness score (0-1)
|
|
- answer_relevance: Answer relevance score (0-1)
|
|
- context_recall: Context recall score (0-1)
|
|
- context_precision: Context precision score (0-1)
|
|
- ragas_score: Overall RAGAS score (0-1)
|
|
- timestamp: When evaluation was run
|
|
"""
|
|
csv_path = (
|
|
self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
|
)
|
|
|
|
with open(csv_path, "w", newline="", encoding="utf-8") as f:
|
|
fieldnames = [
|
|
"test_number",
|
|
"question",
|
|
"project",
|
|
"faithfulness",
|
|
"answer_relevance",
|
|
"context_recall",
|
|
"context_precision",
|
|
"ragas_score",
|
|
"status",
|
|
"timestamp",
|
|
]
|
|
|
|
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
|
writer.writeheader()
|
|
|
|
for idx, result in enumerate(results, 1):
|
|
metrics = result.get("metrics", {})
|
|
writer.writerow(
|
|
{
|
|
"test_number": idx,
|
|
"question": result.get("question", ""),
|
|
"project": result.get("project", "unknown"),
|
|
"faithfulness": f"{metrics.get('faithfulness', 0):.4f}",
|
|
"answer_relevance": f"{metrics.get('answer_relevance', 0):.4f}",
|
|
"context_recall": f"{metrics.get('context_recall', 0):.4f}",
|
|
"context_precision": f"{metrics.get('context_precision', 0):.4f}",
|
|
"ragas_score": f"{result.get('ragas_score', 0):.4f}",
|
|
"status": "success" if metrics else "error",
|
|
"timestamp": result.get("timestamp", ""),
|
|
}
|
|
)
|
|
|
|
return csv_path
|
|
|
|
def _format_metric(self, value: float, width: int = 6) -> str:
|
|
"""
|
|
Format a metric value for display, handling NaN gracefully
|
|
|
|
Args:
|
|
value: The metric value to format
|
|
width: The width of the formatted string
|
|
|
|
Returns:
|
|
Formatted string (e.g., "0.8523" or " N/A ")
|
|
"""
|
|
if _is_nan(value):
|
|
return "N/A".center(width)
|
|
return f"{value:.4f}".rjust(width)
|
|
|
|
def _display_results_table(self, results: List[Dict[str, Any]]):
|
|
"""
|
|
Display evaluation results in a formatted table
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
"""
|
|
logger.info("")
|
|
logger.info("%s", "=" * 115)
|
|
logger.info("📊 EVALUATION RESULTS SUMMARY")
|
|
logger.info("%s", "=" * 115)
|
|
|
|
# Table header
|
|
logger.info(
|
|
"%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s",
|
|
"#",
|
|
"Question",
|
|
"Faith",
|
|
"AnswRel",
|
|
"CtxRec",
|
|
"CtxPrec",
|
|
"RAGAS",
|
|
"Status",
|
|
)
|
|
logger.info("%s", "-" * 115)
|
|
|
|
# Table rows
|
|
for result in results:
|
|
test_num = result.get("test_number", 0)
|
|
question = result.get("question", "")
|
|
# Truncate question to 50 chars
|
|
question_display = (
|
|
(question[:47] + "...") if len(question) > 50 else question
|
|
)
|
|
|
|
metrics = result.get("metrics", {})
|
|
if metrics:
|
|
# Success case - format each metric, handling NaN values
|
|
faith = metrics.get("faithfulness", 0)
|
|
ans_rel = metrics.get("answer_relevance", 0)
|
|
ctx_rec = metrics.get("context_recall", 0)
|
|
ctx_prec = metrics.get("context_precision", 0)
|
|
ragas = result.get("ragas_score", 0)
|
|
status = "✓"
|
|
|
|
logger.info(
|
|
"%-4d | %-50s | %s | %s | %s | %s | %s | %6s",
|
|
test_num,
|
|
question_display,
|
|
self._format_metric(faith, 6),
|
|
self._format_metric(ans_rel, 7),
|
|
self._format_metric(ctx_rec, 6),
|
|
self._format_metric(ctx_prec, 7),
|
|
self._format_metric(ragas, 6),
|
|
status,
|
|
)
|
|
else:
|
|
# Error case
|
|
error = result.get("error", "Unknown error")
|
|
error_display = (error[:20] + "...") if len(error) > 23 else error
|
|
logger.info(
|
|
"%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s",
|
|
test_num,
|
|
question_display,
|
|
"N/A",
|
|
"N/A",
|
|
"N/A",
|
|
"N/A",
|
|
"N/A",
|
|
error_display,
|
|
)
|
|
|
|
logger.info("%s", "=" * 115)
|
|
|
|
def _calculate_benchmark_stats(
|
|
self, results: List[Dict[str, Any]]
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Calculate benchmark statistics from evaluation results
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
|
|
Returns:
|
|
Dictionary with benchmark statistics
|
|
"""
|
|
# Filter out results with errors
|
|
valid_results = [r for r in results if r.get("metrics")]
|
|
total_tests = len(results)
|
|
successful_tests = len(valid_results)
|
|
failed_tests = total_tests - successful_tests
|
|
|
|
if not valid_results:
|
|
return {
|
|
"total_tests": total_tests,
|
|
"successful_tests": 0,
|
|
"failed_tests": failed_tests,
|
|
"success_rate": 0.0,
|
|
}
|
|
|
|
# Calculate averages for each metric (handling NaN values correctly)
|
|
# Track both sum and count for each metric to handle NaN values properly
|
|
metrics_data = {
|
|
"faithfulness": {"sum": 0.0, "count": 0},
|
|
"answer_relevance": {"sum": 0.0, "count": 0},
|
|
"context_recall": {"sum": 0.0, "count": 0},
|
|
"context_precision": {"sum": 0.0, "count": 0},
|
|
"ragas_score": {"sum": 0.0, "count": 0},
|
|
}
|
|
|
|
for result in valid_results:
|
|
metrics = result.get("metrics", {})
|
|
|
|
# For each metric, sum non-NaN values and count them
|
|
faithfulness = metrics.get("faithfulness", 0)
|
|
if not _is_nan(faithfulness):
|
|
metrics_data["faithfulness"]["sum"] += faithfulness
|
|
metrics_data["faithfulness"]["count"] += 1
|
|
|
|
answer_relevance = metrics.get("answer_relevance", 0)
|
|
if not _is_nan(answer_relevance):
|
|
metrics_data["answer_relevance"]["sum"] += answer_relevance
|
|
metrics_data["answer_relevance"]["count"] += 1
|
|
|
|
context_recall = metrics.get("context_recall", 0)
|
|
if not _is_nan(context_recall):
|
|
metrics_data["context_recall"]["sum"] += context_recall
|
|
metrics_data["context_recall"]["count"] += 1
|
|
|
|
context_precision = metrics.get("context_precision", 0)
|
|
if not _is_nan(context_precision):
|
|
metrics_data["context_precision"]["sum"] += context_precision
|
|
metrics_data["context_precision"]["count"] += 1
|
|
|
|
ragas_score = result.get("ragas_score", 0)
|
|
if not _is_nan(ragas_score):
|
|
metrics_data["ragas_score"]["sum"] += ragas_score
|
|
metrics_data["ragas_score"]["count"] += 1
|
|
|
|
# Calculate averages using actual counts for each metric
|
|
avg_metrics = {}
|
|
for metric_name, data in metrics_data.items():
|
|
if data["count"] > 0:
|
|
avg_val = data["sum"] / data["count"]
|
|
avg_metrics[metric_name] = (
|
|
round(avg_val, 4) if not _is_nan(avg_val) else 0.0
|
|
)
|
|
else:
|
|
avg_metrics[metric_name] = 0.0
|
|
|
|
# Find min and max RAGAS scores (filter out NaN)
|
|
ragas_scores = []
|
|
for r in valid_results:
|
|
score = r.get("ragas_score", 0)
|
|
if _is_nan(score):
|
|
continue # Skip NaN values
|
|
ragas_scores.append(score)
|
|
|
|
min_score = min(ragas_scores) if ragas_scores else 0
|
|
max_score = max(ragas_scores) if ragas_scores else 0
|
|
|
|
return {
|
|
"total_tests": total_tests,
|
|
"successful_tests": successful_tests,
|
|
"failed_tests": failed_tests,
|
|
"success_rate": round(successful_tests / total_tests * 100, 2),
|
|
"average_metrics": avg_metrics,
|
|
"min_ragas_score": round(min_score, 4),
|
|
"max_ragas_score": round(max_score, 4),
|
|
}
|
|
|
|
async def run(self) -> Dict[str, Any]:
|
|
"""Run complete evaluation pipeline"""
|
|
|
|
start_time = time.time()
|
|
|
|
# Evaluate responses
|
|
results = await self.evaluate_responses()
|
|
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# Calculate benchmark statistics
|
|
benchmark_stats = self._calculate_benchmark_stats(results)
|
|
|
|
# Save results
|
|
summary = {
|
|
"timestamp": datetime.now().isoformat(),
|
|
"total_tests": len(results),
|
|
"elapsed_time_seconds": round(elapsed_time, 2),
|
|
"benchmark_stats": benchmark_stats,
|
|
"results": results,
|
|
}
|
|
|
|
# Display results table
|
|
self._display_results_table(results)
|
|
|
|
# Save JSON results
|
|
json_path = (
|
|
self.results_dir
|
|
/ f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
|
)
|
|
with open(json_path, "w") as f:
|
|
json.dump(summary, f, indent=2)
|
|
|
|
# Export to CSV
|
|
csv_path = self._export_to_csv(results)
|
|
|
|
# Print summary
|
|
logger.info("")
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("📊 EVALUATION COMPLETE")
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("Total Tests: %s", len(results))
|
|
logger.info("Successful: %s", benchmark_stats["successful_tests"])
|
|
logger.info("Failed: %s", benchmark_stats["failed_tests"])
|
|
logger.info("Success Rate: %.2f%%", benchmark_stats["success_rate"])
|
|
logger.info("Elapsed Time: %.2f seconds", elapsed_time)
|
|
logger.info("Avg Time/Test: %.2f seconds", elapsed_time / len(results))
|
|
|
|
# Print benchmark metrics
|
|
logger.info("")
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("📈 BENCHMARK RESULTS (Average)")
|
|
logger.info("%s", "=" * 70)
|
|
avg = benchmark_stats["average_metrics"]
|
|
logger.info("Average Faithfulness: %.4f", avg["faithfulness"])
|
|
logger.info("Average Answer Relevance: %.4f", avg["answer_relevance"])
|
|
logger.info("Average Context Recall: %.4f", avg["context_recall"])
|
|
logger.info("Average Context Precision: %.4f", avg["context_precision"])
|
|
logger.info("Average RAGAS Score: %.4f", avg["ragas_score"])
|
|
logger.info("%s", "-" * 70)
|
|
logger.info(
|
|
"Min RAGAS Score: %.4f",
|
|
benchmark_stats["min_ragas_score"],
|
|
)
|
|
logger.info(
|
|
"Max RAGAS Score: %.4f",
|
|
benchmark_stats["max_ragas_score"],
|
|
)
|
|
|
|
logger.info("")
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("📁 GENERATED FILES")
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("Results Dir: %s", self.results_dir.absolute())
|
|
logger.info(" • CSV: %s", csv_path.name)
|
|
logger.info(" • JSON: %s", json_path.name)
|
|
logger.info("%s", "=" * 70)
|
|
|
|
return summary
|
|
|
|
|
|
async def main():
|
|
"""
|
|
Main entry point for RAGAS evaluation
|
|
|
|
Command-line arguments:
|
|
--dataset, -d: Path to test dataset JSON file (default: sample_dataset.json)
|
|
--ragendpoint, -r: LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL)
|
|
|
|
Usage:
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
"""
|
|
try:
|
|
# Parse command-line arguments
|
|
parser = argparse.ArgumentParser(
|
|
description="RAGAS Evaluation Script for LightRAG System",
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog="""
|
|
Examples:
|
|
# Use defaults
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
|
|
# Specify custom dataset
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
|
|
# Specify custom RAG endpoint
|
|
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
|
|
|
# Specify both
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
"-d",
|
|
type=str,
|
|
default=None,
|
|
help="Path to test dataset JSON file (default: sample_dataset.json in evaluation directory)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ragendpoint",
|
|
"-r",
|
|
type=str,
|
|
default=None,
|
|
help="LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL environment variable)",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
logger.info("%s", "=" * 70)
|
|
logger.info("🔍 RAGAS Evaluation - Using Real LightRAG API")
|
|
logger.info("%s", "=" * 70)
|
|
|
|
evaluator = RAGEvaluator(
|
|
test_dataset_path=args.dataset, rag_api_url=args.ragendpoint
|
|
)
|
|
await evaluator.run()
|
|
except Exception as e:
|
|
logger.exception("❌ Error: %s", e)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|