Why this change is needed: E2E PostgreSQL tests were failing because they specified graph_storage="PGGraphStorage", but the CI environment doesn't have the Apache AGE extension installed. This caused initialize_storages() to fail with "function create_graph(unknown) does not exist". How it solves it: Removed graph_storage="PGGraphStorage" parameter in all PostgreSQL E2E tests, allowing LightRAG to use the default NetworkXStorage which doesn't require external dependencies. Impact: - PostgreSQL E2E tests can now run successfully in CI - Vector storage migration tests can complete without AGE extension dependency - Maintains test coverage for vector storage model isolation feature Testing: The vector storage migration tests (which are the focus of this PR) don't depend on graph storage implementation and can run with NetworkXStorage.
701 lines
23 KiB
Python
701 lines
23 KiB
Python
"""
|
|
E2E Tests for Multi-Instance LightRAG with Multiple Workspaces
|
|
|
|
These tests verify:
|
|
1. Legacy data migration from tables/collections without model suffix
|
|
2. Multiple LightRAG instances with different embedding models
|
|
3. Multiple workspaces isolation
|
|
4. Both PostgreSQL and Qdrant vector storage
|
|
5. Real document insertion and query operations
|
|
|
|
Prerequisites:
|
|
- PostgreSQL with pgvector extension
|
|
- Qdrant server running
|
|
- Environment variables configured
|
|
"""
|
|
|
|
import os
|
|
import pytest
|
|
import asyncio
|
|
import numpy as np
|
|
import tempfile
|
|
import shutil
|
|
from lightrag import LightRAG
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.postgres_impl import PostgreSQLDB
|
|
from qdrant_client import QdrantClient
|
|
|
|
|
|
# Configuration fixtures
|
|
@pytest.fixture(scope="function")
|
|
def pg_config():
|
|
"""PostgreSQL configuration"""
|
|
return {
|
|
"host": os.getenv("POSTGRES_HOST", "localhost"),
|
|
"port": int(os.getenv("POSTGRES_PORT", "5432")),
|
|
"user": os.getenv("POSTGRES_USER", "lightrag"),
|
|
"password": os.getenv("POSTGRES_PASSWORD", "lightrag_test_password"),
|
|
"database": os.getenv("POSTGRES_DB", "lightrag_test"),
|
|
"workspace": "multi_instance_test",
|
|
"max_connections": 10,
|
|
"connection_retry_attempts": 3,
|
|
"connection_retry_backoff": 0.5,
|
|
"connection_retry_backoff_max": 5.0,
|
|
"pool_close_timeout": 5.0,
|
|
}
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def qdrant_config():
|
|
"""Qdrant configuration"""
|
|
return {
|
|
"url": os.getenv("QDRANT_URL", "http://localhost:6333"),
|
|
"api_key": os.getenv("QDRANT_API_KEY", None),
|
|
}
|
|
|
|
|
|
# Cleanup fixtures
|
|
@pytest.fixture(scope="function")
|
|
async def pg_cleanup(pg_config):
|
|
"""Cleanup PostgreSQL tables before and after test"""
|
|
db = PostgreSQLDB(pg_config)
|
|
await db.initdb()
|
|
|
|
tables_to_drop = [
|
|
"lightrag_doc_full",
|
|
"lightrag_doc_chunks",
|
|
"lightrag_vdb_chunks",
|
|
"lightrag_vdb_chunks_model_a_768d",
|
|
"lightrag_vdb_chunks_model_b_1024d",
|
|
"lightrag_vdb_entity",
|
|
"lightrag_vdb_relation",
|
|
"lightrag_llm_cache",
|
|
"lightrag_doc_status",
|
|
"lightrag_full_entities",
|
|
"lightrag_full_relations",
|
|
"lightrag_entity_chunks",
|
|
"lightrag_relation_chunks",
|
|
]
|
|
|
|
# Cleanup before
|
|
for table in tables_to_drop:
|
|
try:
|
|
await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
|
|
except Exception:
|
|
pass
|
|
|
|
yield db
|
|
|
|
# Cleanup after
|
|
for table in tables_to_drop:
|
|
try:
|
|
await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
|
|
except Exception:
|
|
pass
|
|
|
|
if db.pool:
|
|
await db.pool.close()
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def qdrant_cleanup(qdrant_config):
|
|
"""Cleanup Qdrant collections before and after test"""
|
|
client = QdrantClient(
|
|
url=qdrant_config["url"],
|
|
api_key=qdrant_config["api_key"],
|
|
timeout=60,
|
|
)
|
|
|
|
collections_to_delete = [
|
|
"lightrag_vdb_chunks", # Legacy collection (no model suffix)
|
|
"lightrag_vdb_chunks_text_embedding_ada_002_1536d", # Migrated collection
|
|
"lightrag_vdb_chunks_model_a_768d",
|
|
"lightrag_vdb_chunks_model_b_1024d",
|
|
]
|
|
|
|
# Cleanup before
|
|
for collection in collections_to_delete:
|
|
try:
|
|
if client.collection_exists(collection):
|
|
client.delete_collection(collection)
|
|
except Exception:
|
|
pass
|
|
|
|
yield client
|
|
|
|
# Cleanup after
|
|
for collection in collections_to_delete:
|
|
try:
|
|
if client.collection_exists(collection):
|
|
client.delete_collection(collection)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
@pytest.fixture
|
|
def temp_working_dirs():
|
|
"""Create multiple temporary working directories"""
|
|
dirs = {
|
|
"workspace_a": tempfile.mkdtemp(prefix="lightrag_workspace_a_"),
|
|
"workspace_b": tempfile.mkdtemp(prefix="lightrag_workspace_b_"),
|
|
}
|
|
yield dirs
|
|
# Cleanup
|
|
for dir_path in dirs.values():
|
|
shutil.rmtree(dir_path, ignore_errors=True)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_llm_func():
|
|
"""Mock LLM function that returns proper entity/relation format"""
|
|
async def llm_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
|
await asyncio.sleep(0) # Simulate async I/O
|
|
return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science.
|
|
entity<|#|>Machine Learning<|#|>concept<|#|>ML is a subset of AI.
|
|
relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset<|#|>ML is a subset of AI.
|
|
<|COMPLETE|>"""
|
|
return llm_func
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_tokenizer():
|
|
"""Create a mock tokenizer"""
|
|
from lightrag.utils import Tokenizer
|
|
|
|
class _SimpleTokenizerImpl:
|
|
def encode(self, content: str) -> list[int]:
|
|
return [ord(ch) for ch in content]
|
|
|
|
def decode(self, tokens: list[int]) -> str:
|
|
return "".join(chr(t) for t in tokens)
|
|
|
|
return Tokenizer("mock-tokenizer", _SimpleTokenizerImpl())
|
|
|
|
|
|
# Test: Legacy data migration
|
|
@pytest.mark.asyncio
|
|
async def test_legacy_migration_postgres(
|
|
pg_cleanup, mock_llm_func, mock_tokenizer, pg_config
|
|
):
|
|
"""
|
|
Test automatic migration from legacy PostgreSQL table (no model suffix)
|
|
|
|
Scenario:
|
|
1. Create legacy table without model suffix
|
|
2. Insert test data with 1536d vectors
|
|
3. Initialize LightRAG with model_name (triggers migration)
|
|
4. Verify data migrated to new table with model suffix
|
|
"""
|
|
print("\n[E2E Test] Legacy data migration (1536d)")
|
|
|
|
# Create temp working dir
|
|
import tempfile
|
|
import shutil
|
|
temp_dir = tempfile.mkdtemp(prefix="lightrag_legacy_test_")
|
|
|
|
try:
|
|
# Step 1: Create legacy table and insert data
|
|
legacy_table = "lightrag_vdb_chunks"
|
|
|
|
create_legacy_sql = f"""
|
|
CREATE TABLE IF NOT EXISTS {legacy_table} (
|
|
workspace VARCHAR(255),
|
|
id VARCHAR(255) PRIMARY KEY,
|
|
content TEXT,
|
|
content_vector vector(1536),
|
|
tokens INTEGER,
|
|
chunk_order_index INTEGER,
|
|
full_doc_id VARCHAR(255),
|
|
file_path TEXT,
|
|
create_time TIMESTAMP DEFAULT NOW(),
|
|
update_time TIMESTAMP DEFAULT NOW()
|
|
)
|
|
"""
|
|
await pg_cleanup.execute(create_legacy_sql, None)
|
|
|
|
# Insert 3 test records
|
|
for i in range(3):
|
|
vector_str = "[" + ",".join(["0.1"] * 1536) + "]"
|
|
insert_sql = f"""
|
|
INSERT INTO {legacy_table}
|
|
(workspace, id, content, content_vector, tokens, chunk_order_index, full_doc_id, file_path)
|
|
VALUES ($1, $2, $3, $4::vector, $5, $6, $7, $8)
|
|
"""
|
|
await pg_cleanup.execute(insert_sql, {
|
|
"workspace": pg_config["workspace"],
|
|
"id": f"legacy_{i}",
|
|
"content": f"Legacy content {i}",
|
|
"content_vector": vector_str,
|
|
"tokens": 100,
|
|
"chunk_order_index": i,
|
|
"full_doc_id": "legacy_doc",
|
|
"file_path": "/test/path"
|
|
})
|
|
|
|
# Verify legacy data
|
|
count_result = await pg_cleanup.query(
|
|
f"SELECT COUNT(*) as count FROM {legacy_table} WHERE workspace=$1",
|
|
[pg_config["workspace"]]
|
|
)
|
|
legacy_count = count_result.get("count", 0)
|
|
print(f"✅ Legacy table created with {legacy_count} records")
|
|
|
|
# Step 2: Initialize LightRAG with model_name (triggers migration)
|
|
async def embed_func(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 1536)
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
max_token_size=8192,
|
|
func=embed_func,
|
|
model_name="text-embedding-ada-002"
|
|
)
|
|
|
|
rag = LightRAG(
|
|
working_dir=temp_dir,
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func,
|
|
tokenizer=mock_tokenizer,
|
|
kv_storage="PGKVStorage",
|
|
vector_storage="PGVectorStorage",
|
|
# Use default NetworkXStorage for graph storage (AGE extension not available in CI)
|
|
doc_status_storage="PGDocStatusStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**pg_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
print("🔄 Initializing LightRAG (triggers migration)...")
|
|
await rag.initialize_storages()
|
|
|
|
# Step 3: Verify migration
|
|
new_table = rag.chunks_vdb.table_name
|
|
assert "text_embedding_ada_002_1536d" in new_table.lower()
|
|
|
|
new_count_result = await pg_cleanup.query(
|
|
f"SELECT COUNT(*) as count FROM {new_table} WHERE workspace=$1",
|
|
[pg_config["workspace"]]
|
|
)
|
|
new_count = new_count_result.get("count", 0)
|
|
|
|
assert new_count == legacy_count, \
|
|
f"Expected {legacy_count} records migrated, got {new_count}"
|
|
print(f"✅ Migration successful: {new_count}/{legacy_count} records migrated")
|
|
print(f"✅ New table: {new_table}")
|
|
|
|
await rag.finalize_storages()
|
|
|
|
finally:
|
|
# Cleanup temp dir
|
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
|
|
|
|
|
# Test: Qdrant legacy data migration
|
|
@pytest.mark.asyncio
|
|
async def test_legacy_migration_qdrant(
|
|
qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config
|
|
):
|
|
"""
|
|
Test automatic migration from legacy Qdrant collection (no model suffix)
|
|
|
|
Scenario:
|
|
1. Create legacy collection without model suffix
|
|
2. Insert test vectors with 1536d
|
|
3. Initialize LightRAG with model_name (triggers migration)
|
|
4. Verify data migrated to new collection with model suffix
|
|
"""
|
|
print("\n[E2E Test] Qdrant legacy data migration (1536d)")
|
|
|
|
# Create temp working dir
|
|
import tempfile
|
|
import shutil
|
|
temp_dir = tempfile.mkdtemp(prefix="lightrag_qdrant_legacy_")
|
|
|
|
try:
|
|
# Step 1: Create legacy collection and insert data
|
|
legacy_collection = "lightrag_vdb_chunks"
|
|
|
|
# Create legacy collection without model suffix
|
|
from qdrant_client.models import Distance, VectorParams
|
|
|
|
qdrant_cleanup.create_collection(
|
|
collection_name=legacy_collection,
|
|
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
|
|
)
|
|
print(f"✅ Created legacy collection: {legacy_collection}")
|
|
|
|
# Insert 3 test records
|
|
from qdrant_client.models import PointStruct
|
|
|
|
test_vectors = []
|
|
for i in range(3):
|
|
vector = np.random.rand(1536).tolist()
|
|
point = PointStruct(
|
|
id=i,
|
|
vector=vector,
|
|
payload={
|
|
"id": f"legacy_{i}",
|
|
"content": f"Legacy content {i}",
|
|
"tokens": 100,
|
|
"chunk_order_index": i,
|
|
"full_doc_id": "legacy_doc",
|
|
"file_path": "/test/path",
|
|
}
|
|
)
|
|
test_vectors.append(point)
|
|
|
|
qdrant_cleanup.upsert(
|
|
collection_name=legacy_collection,
|
|
points=test_vectors
|
|
)
|
|
|
|
# Verify legacy data
|
|
legacy_count = qdrant_cleanup.count(legacy_collection).count
|
|
print(f"✅ Legacy collection created with {legacy_count} vectors")
|
|
|
|
# Step 2: Initialize LightRAG with model_name (triggers migration)
|
|
async def embed_func(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 1536)
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
max_token_size=8192,
|
|
func=embed_func,
|
|
model_name="text-embedding-ada-002"
|
|
)
|
|
|
|
rag = LightRAG(
|
|
working_dir=temp_dir,
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func,
|
|
tokenizer=mock_tokenizer,
|
|
vector_storage="QdrantVectorDBStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**qdrant_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
print("🔄 Initializing LightRAG (triggers migration)...")
|
|
await rag.initialize_storages()
|
|
|
|
# Step 3: Verify migration
|
|
new_collection = rag.chunks_vdb.final_namespace
|
|
assert "text_embedding_ada_002_1536d" in new_collection
|
|
|
|
# Verify new collection exists
|
|
assert qdrant_cleanup.collection_exists(new_collection), \
|
|
f"New collection {new_collection} should exist"
|
|
|
|
new_count = qdrant_cleanup.count(new_collection).count
|
|
|
|
assert new_count == legacy_count, \
|
|
f"Expected {legacy_count} vectors migrated, got {new_count}"
|
|
print(f"✅ Migration successful: {new_count}/{legacy_count} vectors migrated")
|
|
print(f"✅ New collection: {new_collection}")
|
|
|
|
# Verify vector dimension
|
|
collection_info = qdrant_cleanup.get_collection(new_collection)
|
|
assert collection_info.config.params.vectors.size == 1536, \
|
|
"Migrated collection should have 1536 dimensions"
|
|
print(f"✅ Vector dimension verified: {collection_info.config.params.vectors.size}d")
|
|
|
|
await rag.finalize_storages()
|
|
|
|
finally:
|
|
# Cleanup temp dir
|
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
|
|
|
|
|
# Test: Multiple LightRAG instances with PostgreSQL
|
|
@pytest.mark.asyncio
|
|
async def test_multi_instance_postgres(
|
|
pg_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, pg_config
|
|
):
|
|
"""
|
|
Test multiple LightRAG instances with different dimensions and model names
|
|
|
|
Scenarios:
|
|
- Instance A: model-a (768d) - explicit model name
|
|
- Instance B: model-b (1024d) - explicit model name
|
|
- Both instances insert documents independently
|
|
- Verify separate tables created for each model+dimension combination
|
|
- Verify data isolation between instances
|
|
|
|
Note: Additional embedding functions (C: 1536d, D: no model_name) are defined
|
|
but not used in this test. They can be activated for extended testing.
|
|
"""
|
|
print("\n[E2E Multi-Instance] PostgreSQL with 2 models (768d vs 1024d)")
|
|
|
|
# Instance A: 768d with model-a
|
|
async def embed_func_a(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 768)
|
|
|
|
embedding_func_a = EmbeddingFunc(
|
|
embedding_dim=768,
|
|
max_token_size=8192,
|
|
func=embed_func_a,
|
|
model_name="model-a"
|
|
)
|
|
|
|
# Instance B: 1024d with model-b
|
|
async def embed_func_b(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 1024)
|
|
|
|
embedding_func_b = EmbeddingFunc(
|
|
embedding_dim=1024,
|
|
max_token_size=8192,
|
|
func=embed_func_b,
|
|
model_name="model-b"
|
|
)
|
|
|
|
# Instance C: 1536d with text-embedding-ada-002
|
|
async def embed_func_c(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 1536)
|
|
|
|
embedding_func_c = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
max_token_size=8192,
|
|
func=embed_func_c,
|
|
model_name="text-embedding-ada-002"
|
|
)
|
|
|
|
# Instance D: 768d WITHOUT model_name (backward compatibility)
|
|
async def embed_func_d(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 768)
|
|
|
|
embedding_func_d = EmbeddingFunc(
|
|
embedding_dim=768,
|
|
max_token_size=8192,
|
|
func=embed_func_d
|
|
# NO model_name - test backward compatibility
|
|
)
|
|
|
|
# Initialize LightRAG instance A
|
|
print("📦 Initializing LightRAG instance A (model-a, 768d)...")
|
|
rag_a = LightRAG(
|
|
working_dir=temp_working_dirs["workspace_a"],
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func_a,
|
|
tokenizer=mock_tokenizer,
|
|
kv_storage="PGKVStorage",
|
|
vector_storage="PGVectorStorage",
|
|
# Use default NetworkXStorage for graph storage (AGE extension not available in CI)
|
|
doc_status_storage="PGDocStatusStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**pg_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
await rag_a.initialize_storages()
|
|
table_a = rag_a.chunks_vdb.table_name
|
|
print(f"✅ Instance A initialized: {table_a}")
|
|
|
|
# Initialize LightRAG instance B
|
|
print("📦 Initializing LightRAG instance B (model-b, 1024d)...")
|
|
rag_b = LightRAG(
|
|
working_dir=temp_working_dirs["workspace_b"],
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func_b,
|
|
tokenizer=mock_tokenizer,
|
|
kv_storage="PGKVStorage",
|
|
vector_storage="PGVectorStorage",
|
|
# Use default NetworkXStorage for graph storage (AGE extension not available in CI)
|
|
doc_status_storage="PGDocStatusStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**pg_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
await rag_b.initialize_storages()
|
|
table_b = rag_b.chunks_vdb.table_name
|
|
print(f"✅ Instance B initialized: {table_b}")
|
|
|
|
# Verify table names are different
|
|
assert "model_a_768d" in table_a.lower()
|
|
assert "model_b_1024d" in table_b.lower()
|
|
assert table_a != table_b
|
|
print(f"✅ Table isolation verified: {table_a} != {table_b}")
|
|
|
|
# Verify both tables exist in database
|
|
check_query = """
|
|
SELECT EXISTS (
|
|
SELECT FROM information_schema.tables
|
|
WHERE table_name = $1
|
|
)
|
|
"""
|
|
result_a = await pg_cleanup.query(check_query, [table_a.lower()])
|
|
result_b = await pg_cleanup.query(check_query, [table_b.lower()])
|
|
|
|
assert result_a.get("exists") == True, f"Table {table_a} should exist"
|
|
assert result_b.get("exists") == True, f"Table {table_b} should exist"
|
|
print("✅ Both tables exist in PostgreSQL")
|
|
|
|
# Insert documents in instance A
|
|
print("📝 Inserting document in instance A...")
|
|
await rag_a.ainsert("Document A: This is about artificial intelligence and neural networks.")
|
|
|
|
# Insert documents in instance B
|
|
print("📝 Inserting document in instance B...")
|
|
await rag_b.ainsert("Document B: This is about machine learning and deep learning.")
|
|
|
|
# Verify data isolation
|
|
count_a_result = await pg_cleanup.query(
|
|
f"SELECT COUNT(*) as count FROM {table_a}",
|
|
[]
|
|
)
|
|
count_b_result = await pg_cleanup.query(
|
|
f"SELECT COUNT(*) as count FROM {table_b}",
|
|
[]
|
|
)
|
|
|
|
count_a = count_a_result.get("count", 0)
|
|
count_b = count_b_result.get("count", 0)
|
|
|
|
print(f"✅ Instance A chunks: {count_a}")
|
|
print(f"✅ Instance B chunks: {count_b}")
|
|
|
|
assert count_a > 0, "Instance A should have data"
|
|
assert count_b > 0, "Instance B should have data"
|
|
|
|
# Cleanup
|
|
await rag_a.finalize_storages()
|
|
await rag_b.finalize_storages()
|
|
|
|
print("✅ Multi-instance PostgreSQL test passed!")
|
|
|
|
|
|
# Test: Multiple LightRAG instances with Qdrant
|
|
@pytest.mark.asyncio
|
|
async def test_multi_instance_qdrant(
|
|
qdrant_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, qdrant_config
|
|
):
|
|
"""
|
|
Test multiple LightRAG instances with different models using Qdrant
|
|
|
|
Scenario:
|
|
- Instance A: model-a (768d)
|
|
- Instance B: model-b (1024d)
|
|
- Both insert documents independently
|
|
- Verify separate collections created and data isolated
|
|
"""
|
|
print("\n[E2E Multi-Instance] Qdrant with 2 models (768d vs 1024d)")
|
|
|
|
# Create embedding function for model A (768d)
|
|
async def embed_func_a(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 768)
|
|
|
|
embedding_func_a = EmbeddingFunc(
|
|
embedding_dim=768,
|
|
max_token_size=8192,
|
|
func=embed_func_a,
|
|
model_name="model-a"
|
|
)
|
|
|
|
# Create embedding function for model B (1024d)
|
|
async def embed_func_b(texts):
|
|
await asyncio.sleep(0)
|
|
return np.random.rand(len(texts), 1024)
|
|
|
|
embedding_func_b = EmbeddingFunc(
|
|
embedding_dim=1024,
|
|
max_token_size=8192,
|
|
func=embed_func_b,
|
|
model_name="model-b"
|
|
)
|
|
|
|
# Initialize LightRAG instance A
|
|
print("📦 Initializing LightRAG instance A (model-a, 768d)...")
|
|
rag_a = LightRAG(
|
|
working_dir=temp_working_dirs["workspace_a"],
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func_a,
|
|
tokenizer=mock_tokenizer,
|
|
vector_storage="QdrantVectorDBStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**qdrant_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
await rag_a.initialize_storages()
|
|
collection_a = rag_a.chunks_vdb.final_namespace
|
|
print(f"✅ Instance A initialized: {collection_a}")
|
|
|
|
# Initialize LightRAG instance B
|
|
print("📦 Initializing LightRAG instance B (model-b, 1024d)...")
|
|
rag_b = LightRAG(
|
|
working_dir=temp_working_dirs["workspace_b"],
|
|
llm_model_func=mock_llm_func,
|
|
embedding_func=embedding_func_b,
|
|
tokenizer=mock_tokenizer,
|
|
vector_storage="QdrantVectorDBStorage",
|
|
vector_db_storage_cls_kwargs={
|
|
**qdrant_config,
|
|
"cosine_better_than_threshold": 0.8
|
|
},
|
|
)
|
|
|
|
await rag_b.initialize_storages()
|
|
collection_b = rag_b.chunks_vdb.final_namespace
|
|
print(f"✅ Instance B initialized: {collection_b}")
|
|
|
|
# Verify collection names are different
|
|
assert "model_a_768d" in collection_a
|
|
assert "model_b_1024d" in collection_b
|
|
assert collection_a != collection_b
|
|
print(f"✅ Collection isolation verified: {collection_a} != {collection_b}")
|
|
|
|
# Verify both collections exist in Qdrant
|
|
assert qdrant_cleanup.collection_exists(collection_a), \
|
|
f"Collection {collection_a} should exist"
|
|
assert qdrant_cleanup.collection_exists(collection_b), \
|
|
f"Collection {collection_b} should exist"
|
|
print("✅ Both collections exist in Qdrant")
|
|
|
|
# Verify vector dimensions
|
|
info_a = qdrant_cleanup.get_collection(collection_a)
|
|
info_b = qdrant_cleanup.get_collection(collection_b)
|
|
|
|
assert info_a.config.params.vectors.size == 768, "Model A should use 768 dimensions"
|
|
assert info_b.config.params.vectors.size == 1024, "Model B should use 1024 dimensions"
|
|
print(f"✅ Vector dimensions verified: {info_a.config.params.vectors.size}d vs {info_b.config.params.vectors.size}d")
|
|
|
|
# Insert documents in instance A
|
|
print("📝 Inserting document in instance A...")
|
|
await rag_a.ainsert("Document A: This is about artificial intelligence and neural networks.")
|
|
|
|
# Insert documents in instance B
|
|
print("📝 Inserting document in instance B...")
|
|
await rag_b.ainsert("Document B: This is about machine learning and deep learning.")
|
|
|
|
# Verify data isolation
|
|
count_a = qdrant_cleanup.count(collection_a).count
|
|
count_b = qdrant_cleanup.count(collection_b).count
|
|
|
|
print(f"✅ Instance A vectors: {count_a}")
|
|
print(f"✅ Instance B vectors: {count_b}")
|
|
|
|
assert count_a > 0, "Instance A should have data"
|
|
assert count_b > 0, "Instance B should have data"
|
|
|
|
# Cleanup
|
|
await rag_a.finalize_storages()
|
|
await rag_b.finalize_storages()
|
|
|
|
print("✅ Multi-instance Qdrant test passed!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Run tests with pytest
|
|
pytest.main([__file__, "-v", "-s"])
|