LightRAG/lightrag/kg/memgraph_impl.py
Raphael MANSUY fe9b8ec02a
tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4)
* feat: Implement multi-tenant architecture with tenant and knowledge base models

- Added data models for tenants, knowledge bases, and related configurations.
- Introduced role and permission management for users in the multi-tenant system.
- Created a service layer for managing tenants and knowledge bases, including CRUD operations.
- Developed a tenant-aware instance manager for LightRAG with caching and isolation features.
- Added a migration script to transition existing workspace-based deployments to the new multi-tenant architecture.

* chore: ignore lightrag/api/webui/assets/ directory

* chore: stop tracking lightrag/api/webui/assets (ignore in .gitignore)

* feat: Initialize LightRAG Multi-Tenant Stack with PostgreSQL

- Added README.md for project overview, setup instructions, and architecture details.
- Created docker-compose.yml to define services: PostgreSQL, Redis, LightRAG API, and Web UI.
- Introduced env.example for environment variable configuration.
- Implemented init-postgres.sql for PostgreSQL schema initialization with multi-tenant support.
- Added reproduce_issue.py for testing default tenant access via API.

* feat: Enhance TenantSelector and update related components for improved multi-tenant support

* feat: Enhance testing capabilities and update documentation

- Updated Makefile to include new test commands for various modes (compatibility, isolation, multi-tenant, security, coverage, and dry-run).
- Modified API health check endpoint in Makefile to reflect new port configuration.
- Updated QUICK_START.md and README.md to reflect changes in service URLs and ports.
- Added environment variables for testing modes in env.example.
- Introduced run_all_tests.sh script to automate testing across different modes.
- Created conftest.py for pytest configuration, including database fixtures and mock services.
- Implemented database helper functions for streamlined database operations in tests.
- Added test collection hooks to skip tests based on the current MULTITENANT_MODE.

* feat: Implement multi-tenant support with demo mode enabled by default

- Added multi-tenant configuration to the environment and Docker setup.
- Created pre-configured demo tenants (acme-corp and techstart) for testing.
- Updated API endpoints to support tenant-specific data access.
- Enhanced Makefile commands for better service management and database operations.
- Introduced user-tenant membership system with role-based access control.
- Added comprehensive documentation for multi-tenant setup and usage.
- Fixed issues with document visibility in multi-tenant environments.
- Implemented necessary database migrations for user memberships and legacy support.

* feat(audit): Add final audit report for multi-tenant implementation

- Documented overall assessment, architecture overview, test results, security findings, and recommendations.
- Included detailed findings on critical security issues and architectural concerns.

fix(security): Implement security fixes based on audit findings

- Removed global RAG fallback and enforced strict tenant context.
- Configured super-admin access and required user authentication for tenant access.
- Cleared localStorage on logout and improved error handling in WebUI.

chore(logs): Create task logs for audit and security fixes implementation

- Documented actions, decisions, and next steps for both audit and security fixes.
- Summarized test results and remaining recommendations.

chore(scripts): Enhance development stack management scripts

- Added scripts for cleaning, starting, and stopping the development stack.
- Improved output messages and ensured graceful shutdown of services.

feat(starter): Initialize PostgreSQL with AGE extension support

- Created initialization scripts for PostgreSQL extensions including uuid-ossp, vector, and AGE.
- Ensured successful installation and verification of extensions.

* feat: Implement auto-select for first tenant and KB on initial load in WebUI

- Removed WEBUI_INITIAL_STATE_FIX.md as the issue is resolved.
- Added useTenantInitialization hook to automatically select the first available tenant and KB on app load.
- Integrated the new hook into the Root component of the WebUI.
- Updated RetrievalTesting component to ensure a KB is selected before allowing user interaction.
- Created end-to-end tests for multi-tenant isolation and real service interactions.
- Added scripts for starting, stopping, and cleaning the development stack.
- Enhanced API and tenant routes to support tenant-specific pipeline status initialization.
- Updated constants for backend URL to reflect the correct port.
- Improved error handling and logging in various components.

* feat: Add multi-tenant support with enhanced E2E testing scripts and client functionality

* update client

* Add integration and unit tests for multi-tenant API, models, security, and storage

- Implement integration tests for tenant and knowledge base management endpoints in `test_tenant_api_routes.py`.
- Create unit tests for tenant isolation, model validation, and role permissions in `test_tenant_models.py`.
- Add security tests to enforce role-based permissions and context validation in `test_tenant_security.py`.
- Develop tests for tenant-aware storage operations and context isolation in `test_tenant_storage_phase3.py`.

* feat(e2e): Implement OpenAI model support and database reset functionality

* Add comprehensive test suite for gpt-5-nano compatibility

- Introduced tests for parameter normalization, embeddings, and entity extraction.
- Implemented direct API testing for gpt-5-nano.
- Validated .env configuration loading and OpenAI API connectivity.
- Analyzed reasoning token overhead with various token limits.
- Documented test procedures and expected outcomes in README files.
- Ensured all tests pass for production readiness.

* kg(postgres_impl): ensure AGE extension is loaded in session and configure graph initialization

* dev: add hybrid dev helper scripts, Makefile, docker-compose.dev-db and local development docs

* feat(dev): add dev helper scripts and local development documentation for hybrid setup

* feat(multi-tenant): add detailed specifications and logs for multi-tenant improvements, including UX, backend handling, and ingestion pipeline

* feat(migration): add generated tenant/kb columns, indexes, triggers; drop unused tables; update schema and docs

* test(backward-compat): adapt tests to new StorageNameSpace/TenantService APIs (use concrete dummy storages)

* chore: multi-tenant and UX updates — docs, webui, storage, tenant service adjustments

* tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency

- gpt5_nano_compatibility: add pytest-asyncio markers, skip when OPENAI key missing, prevent module-level asyncio.run collection, add conftest
- Ollama tests: add server availability check and skip markers; avoid pytest collection warnings by renaming helper classes
- Graph storage tests: rename interactive test functions to avoid pytest collection
- Document & Tenant routes: support external_ids for idempotency; ensure HTTPExceptions are re-raised
- LightRAG core: support external_ids in apipeline_enqueue_documents and idempotent logic
- Tests updated to match API changes (tenant routes & document routes)
- Add logs and scripts for inspection and audit
2025-12-04 16:04:21 +08:00

1188 lines
48 KiB
Python

import os
import asyncio
import random
from dataclasses import dataclass
from typing import final
import configparser
from ..utils import logger
from ..base import BaseGraphStorage
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from ..constants import GRAPH_FIELD_SEP
from ..kg.shared_storage import get_data_init_lock, get_graph_db_lock
import pipmaster as pm
if not pm.is_installed("neo4j"):
pm.install("neo4j")
from neo4j import (
AsyncGraphDatabase,
AsyncManagedTransaction,
)
from neo4j.exceptions import TransientError, ResultFailedError
from dotenv import load_dotenv
# use the .env that is inside the current folder
load_dotenv(dotenv_path=".env", override=False)
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@final
@dataclass
class MemgraphStorage(BaseGraphStorage):
def __init__(self, namespace, global_config, embedding_func, workspace=None):
# Priority: 1) MEMGRAPH_WORKSPACE env 2) user arg 3) default 'base'
memgraph_workspace = os.environ.get("MEMGRAPH_WORKSPACE")
if memgraph_workspace and memgraph_workspace.strip():
workspace = memgraph_workspace
if not workspace or not str(workspace).strip():
workspace = "base"
super().__init__(
namespace=namespace,
workspace=workspace,
global_config=global_config,
embedding_func=embedding_func,
)
self._driver = None
def _get_workspace_label(self) -> str:
"""Return workspace label (guaranteed non-empty during initialization)"""
return self._get_composite_workspace()
async def initialize(self):
async with get_data_init_lock():
URI = os.environ.get(
"MEMGRAPH_URI",
config.get("memgraph", "uri", fallback="bolt://localhost:7687"),
)
USERNAME = os.environ.get(
"MEMGRAPH_USERNAME", config.get("memgraph", "username", fallback="")
)
PASSWORD = os.environ.get(
"MEMGRAPH_PASSWORD", config.get("memgraph", "password", fallback="")
)
DATABASE = os.environ.get(
"MEMGRAPH_DATABASE",
config.get("memgraph", "database", fallback="memgraph"),
)
self._driver = AsyncGraphDatabase.driver(
URI,
auth=(USERNAME, PASSWORD),
)
self._DATABASE = DATABASE
try:
async with self._driver.session(database=DATABASE) as session:
# Create index for base nodes on entity_id if it doesn't exist
try:
workspace_label = self._get_workspace_label()
await session.run(
f"""CREATE INDEX ON :{workspace_label}(entity_id)"""
)
logger.info(
f"[{self.workspace}] Created index on :{workspace_label}(entity_id) in Memgraph."
)
except Exception as e:
# Index may already exist, which is not an error
logger.warning(
f"[{self.workspace}] Index creation on :{workspace_label}(entity_id) may have failed or already exists: {e}"
)
await session.run("RETURN 1")
logger.info(f"[{self.workspace}] Connected to Memgraph at {URI}")
except Exception as e:
logger.error(
f"[{self.workspace}] Failed to connect to Memgraph at {URI}: {e}"
)
raise
async def finalize(self):
async with get_graph_db_lock():
if self._driver is not None:
await self._driver.close()
self._driver = None
async def __aexit__(self, exc_type, exc, tb):
await self.finalize()
async def index_done_callback(self):
# Memgraph handles persistence automatically
pass
async def has_node(self, node_id: str) -> bool:
"""
Check if a node exists in the graph.
Args:
node_id: The ID of the node to check.
Returns:
bool: True if the node exists, False otherwise.
Raises:
Exception: If there is an error checking the node existence.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists"
result = await session.run(query, entity_id=node_id)
single_result = await result.single()
await result.consume() # Ensure result is fully consumed
return (
single_result["node_exists"] if single_result is not None else False
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error checking node existence for {node_id}: {str(e)}"
)
await result.consume() # Ensure the result is consumed even on error
raise
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if an edge exists between two nodes in the graph.
Args:
source_node_id: The ID of the source node.
target_node_id: The ID of the target node.
Returns:
bool: True if the edge exists, False otherwise.
Raises:
Exception: If there is an error checking the edge existence.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = (
f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) "
"RETURN COUNT(r) > 0 AS edgeExists"
)
result = await session.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
) # type: ignore
single_result = await result.single()
await result.consume() # Ensure result is fully consumed
return (
single_result["edgeExists"] if single_result is not None else False
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}"
)
await result.consume() # Ensure the result is consumed even on error
raise
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get node by its label identifier, return only node properties
Args:
node_id: The node label to look up
Returns:
dict: Node properties if found
None: If node not found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = (
f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n"
)
result = await session.run(query, entity_id=node_id)
try:
records = await result.fetch(
2
) # Get 2 records for duplication check
if len(records) > 1:
logger.warning(
f"[{self.workspace}] Multiple nodes found with label '{node_id}'. Using first node."
)
if records:
node = records[0]["n"]
node_dict = dict(node)
# Remove workspace label from labels list if it exists
if "labels" in node_dict:
node_dict["labels"] = [
label
for label in node_dict["labels"]
if label != workspace_label
]
return node_dict
return None
finally:
await result.consume() # Ensure result is fully consumed
except Exception as e:
logger.error(
f"[{self.workspace}] Error getting node for {node_id}: {str(e)}"
)
raise
async def node_degree(self, node_id: str) -> int:
"""Get the degree (number of relationships) of a node with the given label.
If multiple nodes have the same label, returns the degree of the first node.
If no node is found, returns 0.
Args:
node_id: The label of the node
Returns:
int: The number of relationships the node has, or 0 if no node found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-()
RETURN COUNT(r) AS degree
"""
result = await session.run(query, entity_id=node_id)
try:
record = await result.single()
if not record:
logger.warning(
f"[{self.workspace}] No node found with label '{node_id}'"
)
return 0
degree = record["degree"]
return degree
finally:
await result.consume() # Ensure result is fully consumed
except Exception as e:
logger.error(
f"[{self.workspace}] Error getting node degree for {node_id}: {str(e)}"
)
raise
async def get_all_labels(self) -> list[str]:
"""
Get all existing node labels in the database
Returns:
["Person", "Company", ...] # Alphabetically sorted label list
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}`)
WHERE n.entity_id IS NOT NULL
RETURN DISTINCT n.entity_id AS label
ORDER BY label
"""
result = await session.run(query)
labels = []
async for record in result:
labels.append(record["label"])
await result.consume()
return labels
except Exception as e:
logger.error(f"[{self.workspace}] Error getting all labels: {str(e)}")
await result.consume() # Ensure the result is consumed even on error
raise
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""Retrieves all edges (relationships) for a particular node identified by its label.
Args:
source_node_id: Label of the node to get edges for
Returns:
list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
None: If no edges found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
try:
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
WHERE connected.entity_id IS NOT NULL
RETURN n, r, connected"""
results = await session.run(query, entity_id=source_node_id)
edges = []
async for record in results:
source_node = record["n"]
connected_node = record["connected"]
# Skip if either node is None
if not source_node or not connected_node:
continue
source_label = (
source_node.get("entity_id")
if source_node.get("entity_id")
else None
)
target_label = (
connected_node.get("entity_id")
if connected_node.get("entity_id")
else None
)
if source_label and target_label:
edges.append((source_label, target_label))
await results.consume() # Ensure results are consumed
return edges
except Exception as e:
logger.error(
f"[{self.workspace}] Error getting edges for node {source_node_id}: {str(e)}"
)
await results.consume() # Ensure results are consumed even on error
raise
except Exception as e:
logger.error(
f"[{self.workspace}] Error in get_node_edges for {source_node_id}: {str(e)}"
)
raise
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get edge properties between two nodes.
Args:
source_node_id: Label of the source node
target_node_id: Label of the target node
Returns:
dict: Edge properties if found, default properties if not found or on error
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}})
RETURN properties(r) as edge_properties
"""
result = await session.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
)
records = await result.fetch(2)
await result.consume()
if records:
edge_result = dict(records[0]["edge_properties"])
for key, default_value in {
"weight": 1.0,
"source_id": None,
"description": None,
"keywords": None,
}.items():
if key not in edge_result:
edge_result[key] = default_value
logger.warning(
f"[{self.workspace}] Edge between {source_node_id} and {target_node_id} is missing property: {key}. Using default value: {default_value}"
)
return edge_result
return None
except Exception as e:
logger.error(
f"[{self.workspace}] Error getting edge between {source_node_id} and {target_node_id}: {str(e)}"
)
await result.consume() # Ensure the result is consumed even on error
raise
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Upsert a node in the Memgraph database with manual transaction-level retry logic for transient errors.
Args:
node_id: The unique identifier for the node (used as label)
node_data: Dictionary of node properties
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
properties = node_data
entity_type = properties["entity_type"]
if "entity_id" not in properties:
raise ValueError(
"Memgraph: node properties must contain an 'entity_id' field"
)
# Manual transaction-level retry following official Memgraph documentation
max_retries = 100
initial_wait_time = 0.2
backoff_factor = 1.1
jitter_factor = 0.1
for attempt in range(max_retries):
try:
logger.debug(
f"[{self.workspace}] Attempting node upsert, attempt {attempt + 1}/{max_retries}"
)
async with self._driver.session(database=self._DATABASE) as session:
workspace_label = self._get_workspace_label()
async def execute_upsert(tx: AsyncManagedTransaction):
query = f"""
MERGE (n:`{workspace_label}` {{entity_id: $entity_id}})
SET n += $properties
SET n:`{entity_type}`
"""
result = await tx.run(
query, entity_id=node_id, properties=properties
)
await result.consume() # Ensure result is fully consumed
await session.execute_write(execute_upsert)
break # Success - exit retry loop
except (TransientError, ResultFailedError) as e:
# Check if the root cause is a TransientError
root_cause = e
while hasattr(root_cause, "__cause__") and root_cause.__cause__:
root_cause = root_cause.__cause__
# Check if this is a transient error that should be retried
is_transient = (
isinstance(root_cause, TransientError)
or isinstance(e, TransientError)
or "TransientError" in str(e)
or "Cannot resolve conflicting transactions" in str(e)
)
if is_transient:
if attempt < max_retries - 1:
# Calculate wait time with exponential backoff and jitter
jitter = random.uniform(0, jitter_factor) * initial_wait_time
wait_time = (
initial_wait_time * (backoff_factor**attempt) + jitter
)
logger.warning(
f"[{self.workspace}] Node upsert failed. Attempt #{attempt + 1} retrying in {wait_time:.3f} seconds... Error: {str(e)}"
)
await asyncio.sleep(wait_time)
else:
logger.error(
f"[{self.workspace}] Memgraph transient error during node upsert after {max_retries} retries: {str(e)}"
)
raise
else:
# Non-transient error, don't retry
logger.error(
f"[{self.workspace}] Non-transient error during node upsert: {str(e)}"
)
raise
except Exception as e:
logger.error(
f"[{self.workspace}] Unexpected error during node upsert: {str(e)}"
)
raise
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge and its properties between two nodes identified by their labels with manual transaction-level retry logic for transient errors.
Ensures both source and target nodes exist and are unique before creating the edge.
Uses entity_id property to uniquely identify nodes.
Args:
source_node_id (str): Label of the source node (used as identifier)
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): Dictionary of properties to set on the edge
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
edge_properties = edge_data
# Manual transaction-level retry following official Memgraph documentation
max_retries = 100
initial_wait_time = 0.2
backoff_factor = 1.1
jitter_factor = 0.1
for attempt in range(max_retries):
try:
logger.debug(
f"[{self.workspace}] Attempting edge upsert, attempt {attempt + 1}/{max_retries}"
)
async with self._driver.session(database=self._DATABASE) as session:
async def execute_upsert(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})
WITH source
MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}})
MERGE (source)-[r:DIRECTED]-(target)
SET r += $properties
RETURN r, source, target
"""
result = await tx.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
properties=edge_properties,
)
try:
await result.fetch(2)
finally:
await result.consume() # Ensure result is consumed
await session.execute_write(execute_upsert)
break # Success - exit retry loop
except (TransientError, ResultFailedError) as e:
# Check if the root cause is a TransientError
root_cause = e
while hasattr(root_cause, "__cause__") and root_cause.__cause__:
root_cause = root_cause.__cause__
# Check if this is a transient error that should be retried
is_transient = (
isinstance(root_cause, TransientError)
or isinstance(e, TransientError)
or "TransientError" in str(e)
or "Cannot resolve conflicting transactions" in str(e)
)
if is_transient:
if attempt < max_retries - 1:
# Calculate wait time with exponential backoff and jitter
jitter = random.uniform(0, jitter_factor) * initial_wait_time
wait_time = (
initial_wait_time * (backoff_factor**attempt) + jitter
)
logger.warning(
f"[{self.workspace}] Edge upsert failed. Attempt #{attempt + 1} retrying in {wait_time:.3f} seconds... Error: {str(e)}"
)
await asyncio.sleep(wait_time)
else:
logger.error(
f"[{self.workspace}] Memgraph transient error during edge upsert after {max_retries} retries: {str(e)}"
)
raise
else:
# Non-transient error, don't retry
logger.error(
f"[{self.workspace}] Non-transient error during edge upsert: {str(e)}"
)
raise
except Exception as e:
logger.error(
f"[{self.workspace}] Unexpected error during edge upsert: {str(e)}"
)
raise
async def delete_node(self, node_id: str) -> None:
"""Delete a node with the specified label
Args:
node_id: The label of the node to delete
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async def _do_delete(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
DETACH DELETE n
"""
result = await tx.run(query, entity_id=node_id)
logger.debug(f"[{self.workspace}] Deleted node with label {node_id}")
await result.consume()
try:
async with self._driver.session(database=self._DATABASE) as session:
await session.execute_write(_do_delete)
except Exception as e:
logger.error(f"[{self.workspace}] Error during node deletion: {str(e)}")
raise
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node labels to be deleted
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
for node in nodes:
await self.delete_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
for source, target in edges:
async def _do_delete_edge(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}})
DELETE r
"""
result = await tx.run(
query, source_entity_id=source, target_entity_id=target
)
logger.debug(
f"[{self.workspace}] Deleted edge from '{source}' to '{target}'"
)
await result.consume() # Ensure result is fully consumed
try:
async with self._driver.session(database=self._DATABASE) as session:
await session.execute_write(_do_delete_edge)
except Exception as e:
logger.error(f"[{self.workspace}] Error during edge deletion: {str(e)}")
raise
async def drop(self) -> dict[str, str]:
"""Drop all data from the current workspace and clean up resources
This method will delete all nodes and relationships in the Memgraph database.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with get_graph_db_lock():
try:
async with self._driver.session(database=self._DATABASE) as session:
workspace_label = self._get_workspace_label()
query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n"
result = await session.run(query)
await result.consume()
logger.info(
f"[{self.workspace}] Dropped workspace {workspace_label} from Memgraph database {self._DATABASE}"
)
return {"status": "success", "message": "workspace data dropped"}
except Exception as e:
logger.error(
f"[{self.workspace}] Error dropping workspace {workspace_label} from Memgraph database {self._DATABASE}: {e}"
)
return {"status": "error", "message": str(e)}
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get the total degree (sum of relationships) of two nodes.
Args:
src_id: Label of the source node
tgt_id: Label of the target node
Returns:
int: Sum of the degrees of both nodes
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
return degrees
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all nodes that are associated with the given chunk_ids.
Args:
chunk_ids: List of chunk IDs to find associated nodes for
Returns:
list[dict]: A list of nodes, where each node is a dictionary of its properties.
An empty list if no matching nodes are found.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (n:`{workspace_label}`)
WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep)
RETURN DISTINCT n
"""
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
nodes = []
async for record in result:
node = record["n"]
node_dict = dict(node)
node_dict["id"] = node_dict.get("entity_id")
nodes.append(node_dict)
await result.consume()
return nodes
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all edges that are associated with the given chunk_ids.
Args:
chunk_ids: List of chunk IDs to find associated edges for
Returns:
list[dict]: A list of edges, where each edge is a dictionary of its properties.
An empty list if no matching edges are found.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep)
WITH a, b, r, a.entity_id AS source_id, b.entity_id AS target_id
// Ensure we only return each unique edge once by ordering the source and target
WITH a, b, r,
CASE WHEN source_id <= target_id THEN source_id ELSE target_id END AS ordered_source,
CASE WHEN source_id <= target_id THEN target_id ELSE source_id END AS ordered_target
RETURN DISTINCT ordered_source AS source, ordered_target AS target, properties(r) AS properties
"""
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
edges = []
async for record in result:
edge_properties = record["properties"]
edge_properties["source"] = record["source"]
edge_properties["target"] = record["target"]
edges.append(edge_properties)
await result.consume()
return edges
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = None,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node, * means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maximum nodes to return by BFS, Defaults to 1000
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
# Get max_nodes from global_config if not provided
if max_nodes is None:
max_nodes = self.global_config.get("max_graph_nodes", 1000)
else:
# Limit max_nodes to not exceed global_config max_graph_nodes
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
workspace_label = self._get_workspace_label()
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
if node_label == "*":
# First check total node count to determine if graph is truncated
count_query = (
f"MATCH (n:`{workspace_label}`) RETURN count(n) as total"
)
count_result = None
try:
count_result = await session.run(count_query)
count_record = await count_result.single()
if count_record and count_record["total"] > max_nodes:
result.is_truncated = True
logger.info(
f"Graph truncated: {count_record['total']} nodes found, limited to {max_nodes}"
)
finally:
if count_result:
await count_result.consume()
# Run main query to get nodes with highest degree
main_query = f"""
MATCH (n:`{workspace_label}`)
OPTIONAL MATCH (n)-[r]-()
WITH n, COALESCE(count(r), 0) AS degree
ORDER BY degree DESC
LIMIT $max_nodes
WITH collect({{node: n}}) AS filtered_nodes
UNWIND filtered_nodes AS node_info
WITH collect(node_info.node) AS kept_nodes, filtered_nodes
OPTIONAL MATCH (a)-[r]-(b)
WHERE a IN kept_nodes AND b IN kept_nodes
RETURN filtered_nodes AS node_info,
collect(DISTINCT r) AS relationships
"""
result_set = None
try:
result_set = await session.run(
main_query,
{"max_nodes": max_nodes},
)
record = await result_set.single()
finally:
if result_set:
await result_set.consume()
else:
# Run subgraph query for specific node_label
subgraph_query = f"""
MATCH (start:`{workspace_label}`)
WHERE start.entity_id = $entity_id
MATCH path = (start)-[*BFS 0..{max_depth}]-(end:`{workspace_label}`)
WHERE ALL(n IN nodes(path) WHERE '{workspace_label}' IN labels(n))
WITH collect(DISTINCT end) + start AS all_nodes_unlimited
WITH
CASE
WHEN size(all_nodes_unlimited) <= $max_nodes THEN all_nodes_unlimited
ELSE all_nodes_unlimited[0..$max_nodes]
END AS limited_nodes,
size(all_nodes_unlimited) > $max_nodes AS is_truncated
UNWIND limited_nodes AS n
MATCH (n)-[r]-(m)
WHERE m IN limited_nodes
WITH collect(DISTINCT n) AS limited_nodes, collect(DISTINCT r) AS relationships, is_truncated
RETURN
[node IN limited_nodes | {{node: node}}] AS node_info,
relationships,
is_truncated
"""
result_set = None
try:
result_set = await session.run(
subgraph_query,
{
"entity_id": node_label,
"max_nodes": max_nodes,
},
)
record = await result_set.single()
# If no record found, return empty KnowledgeGraph
if not record:
logger.debug(
f"[{self.workspace}] No nodes found for entity_id: {node_label}"
)
return result
# Check if the result was truncated
if record.get("is_truncated"):
result.is_truncated = True
logger.info(
f"[{self.workspace}] Graph truncated: breadth-first search limited to {max_nodes} nodes"
)
finally:
if result_set:
await result_set.consume()
if record:
for node_info in record["node_info"]:
node = node_info["node"]
node_id = node.id
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=f"{node_id}",
labels=[node.get("entity_id")],
properties=dict(node),
)
)
seen_nodes.add(node_id)
for rel in record["relationships"]:
edge_id = rel.id
if edge_id not in seen_edges:
start = rel.start_node
end = rel.end_node
result.edges.append(
KnowledgeGraphEdge(
id=f"{edge_id}",
type=rel.type,
source=f"{start.id}",
target=f"{end.id}",
properties=dict(rel),
)
)
seen_edges.add(edge_id)
logger.info(
f"[{self.workspace}] Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except Exception as e:
logger.warning(
f"[{self.workspace}] Memgraph error during subgraph query: {str(e)}"
)
return result
async def get_all_nodes(self) -> list[dict]:
"""Get all nodes in the graph.
Returns:
A list of all nodes, where each node is a dictionary of its properties
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
MATCH (n:`{workspace_label}`)
RETURN n
"""
result = await session.run(query)
nodes = []
async for record in result:
node = record["n"]
node_dict = dict(node)
# Add node id (entity_id) to the dictionary for easier access
node_dict["id"] = node_dict.get("entity_id")
nodes.append(node_dict)
await result.consume()
return nodes
async def get_all_edges(self) -> list[dict]:
"""Get all edges in the graph.
Returns:
A list of all edges, where each edge is a dictionary of its properties
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
RETURN DISTINCT a.entity_id AS source, b.entity_id AS target, properties(r) AS properties
"""
result = await session.run(query)
edges = []
async for record in result:
edge_properties = record["properties"]
edge_properties["source"] = record["source"]
edge_properties["target"] = record["target"]
edges.append(edge_properties)
await result.consume()
return edges
async def get_popular_labels(self, limit: int = 300) -> list[str]:
"""Get popular labels by node degree (most connected entities)
Args:
limit: Maximum number of labels to return
Returns:
List of labels sorted by degree (highest first)
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
try:
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
MATCH (n:`{workspace_label}`)
WHERE n.entity_id IS NOT NULL
OPTIONAL MATCH (n)-[r]-()
WITH n.entity_id AS label, count(r) AS degree
ORDER BY degree DESC, label ASC
LIMIT {limit}
RETURN label
"""
result = await session.run(query)
labels = []
async for record in result:
labels.append(record["label"])
await result.consume()
logger.debug(
f"[{self.workspace}] Retrieved {len(labels)} popular labels (limit: {limit})"
)
return labels
except Exception as e:
logger.error(f"[{self.workspace}] Error getting popular labels: {str(e)}")
return []
async def search_labels(self, query: str, limit: int = 50) -> list[str]:
"""Search labels with fuzzy matching
Args:
query: Search query string
limit: Maximum number of results to return
Returns:
List of matching labels sorted by relevance
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
query_lower = query.lower().strip()
if not query_lower:
return []
try:
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
cypher_query = f"""
MATCH (n:`{workspace_label}`)
WHERE n.entity_id IS NOT NULL
WITH n.entity_id AS label, toLower(n.entity_id) AS label_lower
WHERE label_lower CONTAINS $query_lower
WITH label, label_lower,
CASE
WHEN label_lower = $query_lower THEN 1000
WHEN label_lower STARTS WITH $query_lower THEN 500
ELSE 100 - size(label)
END AS score
ORDER BY score DESC, label ASC
LIMIT {limit}
RETURN label
"""
result = await session.run(cypher_query, query_lower=query_lower)
labels = []
async for record in result:
labels.append(record["label"])
await result.consume()
logger.debug(
f"[{self.workspace}] Search query '{query}' returned {len(labels)} results (limit: {limit})"
)
return labels
except Exception as e:
logger.error(f"[{self.workspace}] Error searching labels: {str(e)}")
return []