LightRAG/lightrag/kg/falkordb_impl.py
2025-08-21 13:01:39 +03:00

954 lines
No EOL
36 KiB
Python

import os
import re
import asyncio
from dataclasses import dataclass
from typing import final
import configparser
from concurrent.futures import ThreadPoolExecutor
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
import logging
from ..utils import logger
from ..base import BaseGraphStorage
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from ..constants import GRAPH_FIELD_SEP
import pipmaster as pm
if not pm.is_installed("falkordb"):
pm.install("falkordb")
import falkordb
import redis.exceptions
from dotenv import load_dotenv
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
# Set falkordb logger level to ERROR to suppress warning logs
logging.getLogger("falkordb").setLevel(logging.ERROR)
@final
@dataclass
class FalkorDBStorage(BaseGraphStorage):
def __init__(self, namespace, global_config, embedding_func, workspace=None):
# Check FALKORDB_WORKSPACE environment variable and override workspace if set
falkordb_workspace = os.environ.get("FALKORDB_WORKSPACE")
if falkordb_workspace and falkordb_workspace.strip():
workspace = falkordb_workspace
super().__init__(
namespace=namespace,
workspace=workspace or "",
global_config=global_config,
embedding_func=embedding_func,
)
self._db = None
self._graph = None
self._executor = ThreadPoolExecutor(max_workers=4)
def _get_workspace_label(self) -> str:
"""Get workspace label, return 'base' for compatibility when workspace is empty"""
workspace = getattr(self, "workspace", None)
return workspace if workspace else "base"
async def initialize(self):
HOST = os.environ.get("FALKORDB_HOST", config.get("falkordb", "host", fallback="localhost"))
PORT = int(os.environ.get("FALKORDB_PORT", config.get("falkordb", "port", fallback=6379)))
PASSWORD = os.environ.get("FALKORDB_PASSWORD", config.get("falkordb", "password", fallback=None))
USERNAME = os.environ.get("FALKORDB_USERNAME", config.get("falkordb", "username", fallback=None))
GRAPH_NAME = os.environ.get(
"FALKORDB_GRAPH_NAME",
config.get("falkordb", "graph_name", fallback=re.sub(r"[^a-zA-Z0-9-]", "-", self.namespace))
)
try:
# Create FalkorDB connection
self._db = falkordb.FalkorDB(
host=HOST,
port=PORT,
password=PASSWORD,
username=USERNAME,
)
# Select the graph (creates if doesn't exist)
self._graph = self._db.select_graph(GRAPH_NAME)
# Test connection with a simple query
await self._run_query("RETURN 1")
# Create index for workspace nodes on entity_id if it doesn't exist
workspace_label = self._get_workspace_label()
try:
index_query = f"CREATE INDEX FOR (n:`{workspace_label}`) ON (n.entity_id)"
await self._run_query(index_query)
logger.info(f"Created index for {workspace_label} nodes on entity_id in FalkorDB")
except Exception as e:
# Index may already exist, which is not an error
logger.debug(f"Index creation may have failed or already exists: {e}")
logger.info(f"Connected to FalkorDB at {HOST}:{PORT}, graph: {GRAPH_NAME}")
except Exception as e:
logger.error(f"Failed to connect to FalkorDB at {HOST}:{PORT}: {e}")
raise
async def finalize(self):
"""Close the FalkorDB connection and release all resources"""
if self._executor:
self._executor.shutdown(wait=True)
self._executor = None
if self._db:
# FalkorDB doesn't have an explicit close method for the client
self._db = None
self._graph = None
async def __aexit__(self, exc_type, exc, tb):
"""Ensure connection is closed when context manager exits"""
await self.finalize()
async def _run_query(self, query: str, params: dict = None):
"""Run a query asynchronously using thread pool"""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self._executor,
lambda: self._graph.query(query, params or {})
)
async def index_done_callback(self) -> None:
# FalkorDB handles persistence automatically
pass
async def has_node(self, node_id: str) -> bool:
"""
Check if a node with the given label exists in the database
Args:
node_id: Label of the node to check
Returns:
bool: True if node exists, False otherwise
Raises:
ValueError: If node_id is invalid
Exception: If there is an error executing the query
"""
workspace_label = self._get_workspace_label()
try:
query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists"
result = await self._run_query(query, {"entity_id": node_id.strip()})
return result.result_set[0][0] if result.result_set else False
except Exception as e:
logger.error(f"Error checking node existence for {node_id}: {str(e)}")
raise
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if an edge exists between two nodes
Args:
source_node_id: Label of the source node
target_node_id: Label of the target node
Returns:
bool: True if edge exists, False otherwise
Raises:
ValueError: If either node_id is invalid
Exception: If there is an error executing the query
"""
workspace_label = self._get_workspace_label()
try:
query = (
f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) "
"RETURN COUNT(r) > 0 AS edgeExists"
)
result = await self._run_query(query, {
"source_entity_id": source_node_id,
"target_entity_id": target_node_id,
})
return result.result_set[0][0] if result.result_set else False
except Exception as e:
logger.error(
f"Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}"
)
raise
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get node by its label identifier, return only node properties
Args:
node_id: The node label to look up
Returns:
dict: Node properties if found
None: If node not found
Raises:
ValueError: If node_id is invalid
Exception: If there is an error executing the query
"""
workspace_label = self._get_workspace_label()
try:
query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n"
result = await self._run_query(query, {"entity_id": node_id})
if result.result_set and len(result.result_set) > 0:
node = result.result_set[0][0] # Get the first node
# Convert FalkorDB node to dictionary
node_dict = {key: value for key, value in node.properties.items()}
return node_dict
return None
except Exception as e:
logger.error(f"Error getting node for {node_id}: {str(e)}")
raise
async def get_nodes_batch(self, node_ids: list[str]) -> dict[str, dict]:
"""
Retrieve multiple nodes in one query using UNWIND.
Args:
node_ids: List of node entity IDs to fetch.
Returns:
A dictionary mapping each node_id to its node data (or None if not found).
"""
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $node_ids AS id
MATCH (n:`{workspace_label}` {{entity_id: id}})
RETURN n.entity_id AS entity_id, n
"""
result = await self._run_query(query, {"node_ids": node_ids})
nodes = {}
if result.result_set and len(result.result_set) > 0:
for record in result.result_set:
entity_id = record[0]
node = record[1]
node_dict = {key: value for key, value in node.properties.items()}
nodes[entity_id] = node_dict
return nodes
async def node_degree(self, node_id: str) -> int:
"""Get the degree (number of relationships) of a node with the given label.
If multiple nodes have the same label, returns the degree of the first node.
If no node is found, returns 0.
Args:
node_id: The label of the node
Returns:
int: The number of relationships the node has, or 0 if no node found
Raises:
ValueError: If node_id is invalid
Exception: If there is an error executing the query
"""
workspace_label = self._get_workspace_label()
try:
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-()
RETURN COUNT(r) AS degree
"""
result = await self._run_query(query, {"entity_id": node_id})
if result.result_set and len(result.result_set) > 0:
degree = result.result_set[0][0]
return degree
else:
logger.warning(f"No node found with label '{node_id}'")
return 0
except Exception as e:
logger.error(f"Error getting node degree for {node_id}: {str(e)}")
raise
async def node_degrees_batch(self, node_ids: list[str]) -> dict[str, int]:
"""
Retrieve the degree for multiple nodes in a single query using UNWIND.
Args:
node_ids: List of node labels (entity_id values) to look up.
Returns:
A dictionary mapping each node_id to its degree (number of relationships).
If a node is not found, its degree will be set to 0.
"""
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $node_ids AS id
MATCH (n:`{workspace_label}` {{entity_id: id}})
OPTIONAL MATCH (n)-[r]-()
RETURN n.entity_id AS entity_id, COUNT(r) AS degree
"""
result = await self._run_query(query, {"node_ids": node_ids})
degrees = {}
if result.result_set and len(result.result_set) > 0:
for record in result.result_set:
entity_id = record[0]
degrees[entity_id] = record[1]
# For any node_id that did not return a record, set degree to 0.
for nid in node_ids:
if nid not in degrees:
logger.warning(f"No node found with label '{nid}'")
degrees[nid] = 0
return degrees
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get the total degree (sum of relationships) of two nodes.
Args:
src_id: Label of the source node
tgt_id: Label of the target node
Returns:
int: Sum of the degrees of both nodes
"""
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
return degrees
async def edge_degrees_batch(
self, edge_pairs: list[tuple[str, str]]
) -> dict[tuple[str, str], int]:
"""
Calculate the combined degree for each edge (sum of the source and target node degrees)
in batch using the already implemented node_degrees_batch.
Args:
edge_pairs: List of (src, tgt) tuples.
Returns:
A dictionary mapping each (src, tgt) tuple to the sum of their degrees.
"""
# Collect unique node IDs from all edge pairs.
unique_node_ids = {src for src, _ in edge_pairs}
unique_node_ids.update({tgt for _, tgt in edge_pairs})
# Get degrees for all nodes in one go.
degrees = await self.node_degrees_batch(list(unique_node_ids))
# Sum up degrees for each edge pair.
edge_degrees = {}
for src, tgt in edge_pairs:
edge_degrees[(src, tgt)] = degrees.get(src, 0) + degrees.get(tgt, 0)
return edge_degrees
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get edge properties between two nodes.
Args:
source_node_id: Label of the source node
target_node_id: Label of the target node
Returns:
dict: Edge properties if found, default properties if not found or on error
Raises:
ValueError: If either node_id is invalid
Exception: If there is an error executing the query
"""
workspace_label = self._get_workspace_label()
try:
query = f"""
MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}})
RETURN properties(r) as edge_properties
"""
result = await self._run_query(query, {
"source_entity_id": source_node_id,
"target_entity_id": target_node_id,
})
if result.result_set and len(result.result_set) > 0:
edge_result = result.result_set[0][0] # Get properties dict
# Ensure required keys exist with defaults
required_keys = {
"weight": 1.0,
"source_id": None,
"description": None,
"keywords": None,
}
for key, default_value in required_keys.items():
if key not in edge_result:
edge_result[key] = default_value
logger.warning(
f"Edge between {source_node_id} and {target_node_id} "
f"missing {key}, using default: {default_value}"
)
return edge_result
# Return None when no edge found
return None
except Exception as e:
logger.error(
f"Error in get_edge between {source_node_id} and {target_node_id}: {str(e)}"
)
raise
async def get_edges_batch(
self, pairs: list[dict[str, str]]
) -> dict[tuple[str, str], dict]:
"""
Retrieve edge properties for multiple (src, tgt) pairs in one query.
Args:
pairs: List of dictionaries, e.g. [{"src": "node1", "tgt": "node2"}, ...]
Returns:
A dictionary mapping (src, tgt) tuples to their edge properties.
"""
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $pairs AS pair
MATCH (start:`{workspace_label}` {{entity_id: pair.src}})-[r]-(end:`{workspace_label}` {{entity_id: pair.tgt}})
RETURN pair.src AS src_id, pair.tgt AS tgt_id, properties(r) AS edge_properties
"""
result = await self._run_query(query, {"pairs": pairs})
edges_dict = {}
if result.result_set and len(result.result_set) > 0:
for record in result.result_set:
if record and len(record) >= 3:
src = record[0]
tgt = record[1]
edge_props = record[2] if record[2] else {}
edge_result = {}
for key, default in {
"weight": 1.0,
"source_id": None,
"description": None,
"keywords": None,
}.items():
edge_result[key] = edge_props.get(key, default)
edges_dict[(src, tgt)] = edge_result
# Add default properties for pairs not found
for pair_dict in pairs:
src = pair_dict["src"]
tgt = pair_dict["tgt"]
if (src, tgt) not in edges_dict:
edges_dict[(src, tgt)] = {
"weight": 1.0,
"source_id": None,
"description": None,
"keywords": None,
}
return edges_dict
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""Retrieves all edges (relationships) for a particular node identified by its label.
Args:
source_node_id: Label of the node to get edges for
Returns:
list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
None: If no edges found
Raises:
ValueError: If source_node_id is invalid
Exception: If there is an error executing the query
"""
try:
workspace_label = self._get_workspace_label()
query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
WHERE connected.entity_id IS NOT NULL
RETURN n, r, connected"""
result = await self._run_query(query, {"entity_id": source_node_id})
edges = []
if result.result_set:
for record in result.result_set:
source_node = record[0]
connected_node = record[2]
# Skip if either node is None
if not source_node or not connected_node:
continue
source_label = source_node.properties.get("entity_id")
target_label = connected_node.properties.get("entity_id")
if source_label and target_label:
edges.append((source_label, target_label))
return edges
except Exception as e:
logger.error(f"Error in get_node_edges for {source_node_id}: {str(e)}")
raise
async def get_nodes_edges_batch(
self, node_ids: list[str]
) -> dict[str, list[tuple[str, str]]]:
"""
Batch retrieve edges for multiple nodes in one query using UNWIND.
For each node, returns both outgoing and incoming edges to properly represent
the undirected graph nature.
Args:
node_ids: List of node IDs (entity_id) for which to retrieve edges.
Returns:
A dictionary mapping each node ID to its list of edge tuples (source, target).
For each node, the list includes both:
- Outgoing edges: (queried_node, connected_node)
- Incoming edges: (connected_node, queried_node)
"""
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $node_ids AS id
MATCH (n:`{workspace_label}` {{entity_id: id}})
OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
RETURN id AS queried_id, n.entity_id AS node_entity_id,
connected.entity_id AS connected_entity_id,
startNode(r).entity_id AS start_entity_id
"""
result = await self._run_query(query, {"node_ids": node_ids})
# Initialize the dictionary with empty lists for each node ID
edges_dict = {node_id: [] for node_id in node_ids}
# Process results to include both outgoing and incoming edges
if result.result_set:
for record in result.result_set:
queried_id = record[0]
node_entity_id = record[1]
connected_entity_id = record[2]
start_entity_id = record[3]
# Skip if either node is None
if not node_entity_id or not connected_entity_id:
continue
# Determine the actual direction of the edge
# If the start node is the queried node, it's an outgoing edge
# Otherwise, it's an incoming edge
if start_entity_id == node_entity_id:
# Outgoing edge: (queried_node -> connected_node)
edges_dict[queried_id].append((node_entity_id, connected_entity_id))
else:
# Incoming edge: (connected_node -> queried_node)
edges_dict[queried_id].append((connected_entity_id, node_entity_id))
return edges_dict
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (n:`{workspace_label}`)
WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep)
RETURN DISTINCT n
"""
result = await self._run_query(query, {"chunk_ids": chunk_ids, "sep": GRAPH_FIELD_SEP})
nodes = []
if result.result_set:
for record in result.result_set:
node = record[0]
node_dict = {key: value for key, value in node.properties.items()}
# Add node id (entity_id) to the dictionary for easier access
node_dict["id"] = node_dict.get("entity_id")
nodes.append(node_dict)
return nodes
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
workspace_label = self._get_workspace_label()
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep)
RETURN DISTINCT a.entity_id AS source, b.entity_id AS target, properties(r) AS properties
"""
result = await self._run_query(query, {"chunk_ids": chunk_ids, "sep": GRAPH_FIELD_SEP})
edges = []
if result.result_set:
for record in result.result_set:
edge_properties = record[2]
edge_properties["source"] = record[0]
edge_properties["target"] = record[1]
edges.append(edge_properties)
return edges
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((redis.exceptions.RedisError, Exception)),
)
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Upsert a node in the FalkorDB database.
Args:
node_id: The unique identifier for the node (used as label)
node_data: Dictionary of node properties
"""
workspace_label = self._get_workspace_label()
properties = node_data
entity_type = properties["entity_type"]
if "entity_id" not in properties:
raise ValueError("FalkorDB: node properties must contain an 'entity_id' field")
try:
query = f"""
MERGE (n:`{workspace_label}` {{entity_id: $entity_id}})
SET n += $properties
SET n:`{entity_type}`
"""
await self._run_query(query, {"entity_id": node_id, "properties": properties})
except Exception as e:
logger.error(f"Error during upsert: {str(e)}")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((redis.exceptions.RedisError, Exception)),
)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge and its properties between two nodes identified by their labels.
Ensures both source and target nodes exist and are unique before creating the edge.
Uses entity_id property to uniquely identify nodes.
Args:
source_node_id (str): Label of the source node (used as identifier)
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): Dictionary of properties to set on the edge
Raises:
ValueError: If either source or target node does not exist or is not unique
"""
try:
edge_properties = edge_data
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})
WITH source
MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}})
MERGE (source)-[r:DIRECTED]-(target)
SET r += $properties
RETURN r, source, target
"""
await self._run_query(query, {
"source_entity_id": source_node_id,
"target_entity_id": target_node_id,
"properties": edge_properties,
})
except Exception as e:
logger.error(f"Error during edge upsert: {str(e)}")
raise
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = None,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node, * means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maximum nodes to return by BFS, Defaults to 1000
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
# Get max_nodes from global_config if not provided
if max_nodes is None:
max_nodes = self.global_config.get("max_graph_nodes", 1000)
else:
# Limit max_nodes to not exceed global_config max_graph_nodes
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
workspace_label = self._get_workspace_label()
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
try:
if node_label == "*":
# Get all nodes with highest degree
query = f"""
MATCH (n:`{workspace_label}`)
OPTIONAL MATCH (n)-[r]-()
WITH n, COALESCE(count(r), 0) AS degree
ORDER BY degree DESC
LIMIT $max_nodes
WITH collect(n) AS nodes
UNWIND nodes AS node
OPTIONAL MATCH (node)-[rel]-(connected)
WHERE connected IN nodes
RETURN collect(DISTINCT node) AS filtered_nodes,
collect(DISTINCT rel) AS relationships
"""
graph_result = await self._run_query(query, {"max_nodes": max_nodes})
else:
# Get subgraph starting from specific node
# Simple BFS implementation since FalkorDB might not have APOC
query = f"""
MATCH path = (start:`{workspace_label}` {{entity_id: $entity_id}})-[*0..{max_depth}]-(connected)
WITH nodes(path) AS path_nodes, relationships(path) AS path_rels
UNWIND path_nodes AS node
WITH collect(DISTINCT node) AS all_nodes, path_rels
UNWIND path_rels AS rel
WITH all_nodes, collect(DISTINCT rel) AS all_rels
RETURN all_nodes[0..{max_nodes}] AS filtered_nodes, all_rels AS relationships
"""
graph_result = await self._run_query(query, {"entity_id": node_label})
if graph_result.result_set:
record = graph_result.result_set[0]
nodes_list = record[0] if record[0] else []
relationships_list = record[1] if record[1] else []
# Check if truncated
if len(nodes_list) >= max_nodes:
result.is_truncated = True
# Handle nodes
for node in nodes_list:
node_id = str(id(node)) # Use internal node ID
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node.properties.get("entity_id", "")],
properties=dict(node.properties),
)
)
seen_nodes.add(node_id)
# Handle relationships
for rel in relationships_list:
edge_id = str(id(rel)) # Use internal relationship ID
if edge_id not in seen_edges:
# Get start and end node IDs
start_node_id = str(rel.src_node)
end_node_id = str(rel.dest_node)
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=rel.relation,
source=start_node_id,
target=end_node_id,
properties=dict(rel.properties),
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except Exception as e:
logger.error(f"Error in get_knowledge_graph: {str(e)}")
# Return empty graph on error
pass
return result
async def get_all_labels(self) -> list[str]:
"""
Get all existing node labels in the database
Returns:
["Person", "Company", ...] # Alphabetically sorted label list
"""
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}`)
WHERE n.entity_id IS NOT NULL
RETURN DISTINCT n.entity_id AS label
ORDER BY label
"""
result = await self._run_query(query)
labels = []
if result.result_set:
for record in result.result_set:
labels.append(record[0])
return labels
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((redis.exceptions.RedisError, Exception)),
)
async def delete_node(self, node_id: str) -> None:
"""Delete a node with the specified label
Args:
node_id: The label of the node to delete
"""
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
DETACH DELETE n
"""
await self._run_query(query, {"entity_id": node_id})
logger.debug(f"Deleted node with label '{node_id}'")
except Exception as e:
logger.error(f"Error during node deletion: {str(e)}")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((redis.exceptions.RedisError, Exception)),
)
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node labels to be deleted
"""
for node in nodes:
await self.delete_node(node)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((redis.exceptions.RedisError, Exception)),
)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
for source, target in edges:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}})
DELETE r
"""
await self._run_query(query, {
"source_entity_id": source,
"target_entity_id": target
})
logger.debug(f"Deleted edge from '{source}' to '{target}'")
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")
raise
async def get_all_nodes(self) -> list[dict]:
"""Get all nodes in the graph.
Returns:
A list of all nodes, where each node is a dictionary of its properties
"""
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}`)
RETURN n
"""
result = await self._run_query(query)
nodes = []
if result.result_set:
for record in result.result_set:
node = record[0]
node_dict = {key: value for key, value in node.properties.items()}
# Add node id (entity_id) to the dictionary for easier access
node_dict["id"] = node_dict.get("entity_id")
nodes.append(node_dict)
return nodes
async def get_all_edges(self) -> list[dict]:
"""Get all edges in the graph.
Returns:
A list of all edges, where each edge is a dictionary of its properties
"""
workspace_label = self._get_workspace_label()
query = f"""
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
RETURN DISTINCT a.entity_id AS source, b.entity_id AS target, properties(r) AS properties
"""
result = await self._run_query(query)
edges = []
if result.result_set:
for record in result.result_set:
edge_properties = record[2]
edge_properties["source"] = record[0]
edge_properties["target"] = record[1]
edges.append(edge_properties)
return edges
async def drop(self) -> dict[str, str]:
"""Drop all data from current workspace storage and clean up resources
This method will delete all nodes and relationships in the current workspace only.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "workspace data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
workspace_label = self._get_workspace_label()
try:
# Delete all nodes and relationships in current workspace only
query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n"
await self._run_query(query)
logger.info(
f"Process {os.getpid()} drop FalkorDB workspace '{workspace_label}'"
)
return {
"status": "success",
"message": f"workspace '{workspace_label}' data dropped",
}
except Exception as e:
logger.error(
f"Error dropping FalkorDB workspace '{workspace_label}': {e}"
)
return {"status": "error", "message": str(e)}