LightRAG/tests/gpt5_nano_compatibility/test_gpt5_nano_compatibility.py
Raphael MANSUY fe9b8ec02a
tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4)
* feat: Implement multi-tenant architecture with tenant and knowledge base models

- Added data models for tenants, knowledge bases, and related configurations.
- Introduced role and permission management for users in the multi-tenant system.
- Created a service layer for managing tenants and knowledge bases, including CRUD operations.
- Developed a tenant-aware instance manager for LightRAG with caching and isolation features.
- Added a migration script to transition existing workspace-based deployments to the new multi-tenant architecture.

* chore: ignore lightrag/api/webui/assets/ directory

* chore: stop tracking lightrag/api/webui/assets (ignore in .gitignore)

* feat: Initialize LightRAG Multi-Tenant Stack with PostgreSQL

- Added README.md for project overview, setup instructions, and architecture details.
- Created docker-compose.yml to define services: PostgreSQL, Redis, LightRAG API, and Web UI.
- Introduced env.example for environment variable configuration.
- Implemented init-postgres.sql for PostgreSQL schema initialization with multi-tenant support.
- Added reproduce_issue.py for testing default tenant access via API.

* feat: Enhance TenantSelector and update related components for improved multi-tenant support

* feat: Enhance testing capabilities and update documentation

- Updated Makefile to include new test commands for various modes (compatibility, isolation, multi-tenant, security, coverage, and dry-run).
- Modified API health check endpoint in Makefile to reflect new port configuration.
- Updated QUICK_START.md and README.md to reflect changes in service URLs and ports.
- Added environment variables for testing modes in env.example.
- Introduced run_all_tests.sh script to automate testing across different modes.
- Created conftest.py for pytest configuration, including database fixtures and mock services.
- Implemented database helper functions for streamlined database operations in tests.
- Added test collection hooks to skip tests based on the current MULTITENANT_MODE.

* feat: Implement multi-tenant support with demo mode enabled by default

- Added multi-tenant configuration to the environment and Docker setup.
- Created pre-configured demo tenants (acme-corp and techstart) for testing.
- Updated API endpoints to support tenant-specific data access.
- Enhanced Makefile commands for better service management and database operations.
- Introduced user-tenant membership system with role-based access control.
- Added comprehensive documentation for multi-tenant setup and usage.
- Fixed issues with document visibility in multi-tenant environments.
- Implemented necessary database migrations for user memberships and legacy support.

* feat(audit): Add final audit report for multi-tenant implementation

- Documented overall assessment, architecture overview, test results, security findings, and recommendations.
- Included detailed findings on critical security issues and architectural concerns.

fix(security): Implement security fixes based on audit findings

- Removed global RAG fallback and enforced strict tenant context.
- Configured super-admin access and required user authentication for tenant access.
- Cleared localStorage on logout and improved error handling in WebUI.

chore(logs): Create task logs for audit and security fixes implementation

- Documented actions, decisions, and next steps for both audit and security fixes.
- Summarized test results and remaining recommendations.

chore(scripts): Enhance development stack management scripts

- Added scripts for cleaning, starting, and stopping the development stack.
- Improved output messages and ensured graceful shutdown of services.

feat(starter): Initialize PostgreSQL with AGE extension support

- Created initialization scripts for PostgreSQL extensions including uuid-ossp, vector, and AGE.
- Ensured successful installation and verification of extensions.

* feat: Implement auto-select for first tenant and KB on initial load in WebUI

- Removed WEBUI_INITIAL_STATE_FIX.md as the issue is resolved.
- Added useTenantInitialization hook to automatically select the first available tenant and KB on app load.
- Integrated the new hook into the Root component of the WebUI.
- Updated RetrievalTesting component to ensure a KB is selected before allowing user interaction.
- Created end-to-end tests for multi-tenant isolation and real service interactions.
- Added scripts for starting, stopping, and cleaning the development stack.
- Enhanced API and tenant routes to support tenant-specific pipeline status initialization.
- Updated constants for backend URL to reflect the correct port.
- Improved error handling and logging in various components.

* feat: Add multi-tenant support with enhanced E2E testing scripts and client functionality

* update client

* Add integration and unit tests for multi-tenant API, models, security, and storage

- Implement integration tests for tenant and knowledge base management endpoints in `test_tenant_api_routes.py`.
- Create unit tests for tenant isolation, model validation, and role permissions in `test_tenant_models.py`.
- Add security tests to enforce role-based permissions and context validation in `test_tenant_security.py`.
- Develop tests for tenant-aware storage operations and context isolation in `test_tenant_storage_phase3.py`.

* feat(e2e): Implement OpenAI model support and database reset functionality

* Add comprehensive test suite for gpt-5-nano compatibility

- Introduced tests for parameter normalization, embeddings, and entity extraction.
- Implemented direct API testing for gpt-5-nano.
- Validated .env configuration loading and OpenAI API connectivity.
- Analyzed reasoning token overhead with various token limits.
- Documented test procedures and expected outcomes in README files.
- Ensured all tests pass for production readiness.

* kg(postgres_impl): ensure AGE extension is loaded in session and configure graph initialization

* dev: add hybrid dev helper scripts, Makefile, docker-compose.dev-db and local development docs

* feat(dev): add dev helper scripts and local development documentation for hybrid setup

* feat(multi-tenant): add detailed specifications and logs for multi-tenant improvements, including UX, backend handling, and ingestion pipeline

* feat(migration): add generated tenant/kb columns, indexes, triggers; drop unused tables; update schema and docs

* test(backward-compat): adapt tests to new StorageNameSpace/TenantService APIs (use concrete dummy storages)

* chore: multi-tenant and UX updates — docs, webui, storage, tenant service adjustments

* tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency

- gpt5_nano_compatibility: add pytest-asyncio markers, skip when OPENAI key missing, prevent module-level asyncio.run collection, add conftest
- Ollama tests: add server availability check and skip markers; avoid pytest collection warnings by renaming helper classes
- Graph storage tests: rename interactive test functions to avoid pytest collection
- Document & Tenant routes: support external_ids for idempotency; ensure HTTPExceptions are re-raised
- LightRAG core: support external_ids in apipeline_enqueue_documents and idempotent logic
- Tests updated to match API changes (tenant routes & document routes)
- Add logs and scripts for inspection and audit
2025-12-04 16:04:21 +08:00

299 lines
10 KiB
Python

#!/usr/bin/env python3
"""
Test script to verify gpt-5-nano compatibility with LightRAG.
This script validates that:
1. gpt-5-nano parameter handling works correctly (max_completion_tokens conversion)
2. Temperature parameter is properly handled for gpt-5-nano
3. Embeddings work with gpt-5-nano configuration
4. Entity extraction works with gpt-5-nano
5. Full pipeline works end-to-end
Requires:
- OPENAI_API_KEY environment variable set
- LLM_MODEL set to gpt-5-nano or specified via argument
Run standalone: python test_gpt5_nano_compatibility.py
Run via pytest: pytest test_gpt5_nano_compatibility.py -v (some tests skipped without API key)
"""
import os
import sys
import asyncio
import logging
import pytest
from typing import Any, Dict
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Add the repo to path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from lightrag.llm.openai import (
openai_complete_if_cache,
openai_embed,
_normalize_openai_kwargs_for_model
)
# Define markers for different test types
NEEDS_API_KEY = pytest.mark.skipif(
not os.getenv("OPENAI_API_KEY") and not os.getenv("LLM_BINDING_API_KEY"),
reason="OPENAI_API_KEY or LLM_BINDING_API_KEY not set"
)
@pytest.mark.asyncio
async def test_parameter_normalization():
"""Test 1: Parameter normalization for gpt-5-nano"""
logger.info("=" * 60)
logger.info("TEST 1: Parameter normalization for gpt-5-nano")
logger.info("=" * 60)
try:
# Test case 1a: max_tokens conversion to max_completion_tokens with buffer
kwargs = {"max_tokens": 500, "temperature": 0.7, "top_p": 0.9}
original_kwargs = kwargs.copy()
_normalize_openai_kwargs_for_model("gpt-5-nano", kwargs)
logger.info(f"Input kwargs: {original_kwargs}")
logger.info(f"Output kwargs: {kwargs}")
assert "max_completion_tokens" in kwargs, "max_tokens should be converted to max_completion_tokens"
assert kwargs["max_completion_tokens"] >= 500, "max_completion_tokens should be at least original value (500)"
assert "max_tokens" not in kwargs, "max_tokens should be removed"
assert "temperature" not in kwargs, "temperature should be removed for gpt-5-nano"
assert "top_p" in kwargs, "top_p should be preserved"
logger.info(f"✅ Test 1a passed: max_tokens → max_completion_tokens conversion works (buffered from 500 to {kwargs['max_completion_tokens']})")
# Test case 1b: Both max_tokens and max_completion_tokens (edge case)
kwargs = {
"max_tokens": 200,
"max_completion_tokens": 300,
"temperature": 0.5
}
original_kwargs = kwargs.copy()
_normalize_openai_kwargs_for_model("gpt-5-nano", kwargs)
logger.info(f"Input kwargs (both max params): {original_kwargs}")
logger.info(f"Output kwargs: {kwargs}")
assert "max_tokens" not in kwargs, "max_tokens should be removed"
assert "max_completion_tokens" in kwargs, "max_completion_tokens should be kept"
assert "temperature" not in kwargs, "temperature should be removed"
logger.info("✅ Test 1b passed: Both max parameters handled correctly")
# Test case 1c: Non-gpt5 models shouldn't change
kwargs = {"max_tokens": 500, "temperature": 0.7}
original_kwargs = kwargs.copy()
_normalize_openai_kwargs_for_model("gpt-4o-mini", kwargs)
logger.info(f"Input kwargs (gpt-4o-mini): {original_kwargs}")
logger.info(f"Output kwargs: {kwargs}")
assert "max_tokens" in kwargs, "max_tokens should be preserved for gpt-4o-mini"
assert kwargs["max_tokens"] == 500, "max_tokens value should be unchanged"
assert "temperature" in kwargs, "temperature should be preserved for gpt-4o-mini"
logger.info("✅ Test 1c passed: Non-gpt5 models are unchanged")
logger.info("✅ TEST 1 PASSED: Parameter normalization works correctly\n")
return True
except Exception as e:
logger.error(f"❌ TEST 1 FAILED: {e}")
import traceback
traceback.print_exc()
return False
@pytest.mark.asyncio
@NEEDS_API_KEY
async def test_embeddings():
"""Test 2: Embeddings generation"""
logger.info("=" * 60)
logger.info("TEST 2: Embeddings generation")
logger.info("=" * 60)
try:
texts = ["Hello world", "This is a test"]
model = os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
logger.info(f"Generating embeddings with model: {model}")
embeddings = await openai_embed(texts, model=model)
logger.info(f"Generated {len(embeddings)} embeddings")
logger.info(f"First embedding shape: {len(embeddings[0])}")
assert len(embeddings) == len(texts), "Should get one embedding per text"
assert len(embeddings[0]) > 0, "Embeddings should not be empty"
logger.info("✅ TEST 2 PASSED: Embeddings generation works\n")
return True
except Exception as e:
logger.error(f"❌ TEST 2 FAILED: {e}")
import traceback
traceback.print_exc()
return False
@pytest.mark.asyncio
@pytest.mark.skipif(not os.getenv("OPENAI_API_KEY"), reason="OPENAI_API_KEY not set")
async def test_simple_completion():
"""Test 3: Simple LLM completion with gpt-5-nano"""
logger.info("=" * 60)
logger.info("TEST 3: Simple LLM completion with gpt-5-nano")
logger.info("=" * 60)
try:
model = os.getenv("LLM_MODEL", "gpt-5-nano")
logger.info(f"Testing completion with model: {model}")
# Enable verbose debug logging
import logging as py_logging
py_logging.getLogger("openai").setLevel(py_logging.DEBUG)
# Test without custom temperature (gpt-5-nano requirement)
response = await openai_complete_if_cache(
model=model,
prompt="Say hello in one word",
system_prompt="You are a helpful assistant.",
max_completion_tokens=20
)
logger.info(f"Response: {response}")
assert len(response) > 0, "Response should not be empty"
logger.info("✅ TEST 3 PASSED: Simple completion works\n")
return True
except Exception as e:
logger.error(f"❌ TEST 3 FAILED: {e}")
import traceback
traceback.print_exc()
return False
@pytest.mark.asyncio
@pytest.mark.skipif(not os.getenv("OPENAI_API_KEY"), reason="OPENAI_API_KEY not set")
async def test_extraction_with_gpt5nano():
"""Test 4: Entity extraction style task"""
logger.info("=" * 60)
logger.info("TEST 4: Entity extraction style task")
logger.info("=" * 60)
try:
model = os.getenv("LLM_MODEL", "gpt-5-nano")
prompt = """Extract the entities from this text:
Apple Inc. was founded by Steve Jobs in 1976.
Return as JSON with keys: company, person, year."""
logger.info(f"Testing extraction with model: {model}")
response = await openai_complete_if_cache(
model=model,
prompt=prompt,
system_prompt="You are an entity extraction assistant. Always respond in valid JSON.",
max_completion_tokens=100
)
logger.info(f"Response: {response}")
assert len(response) > 0, "Response should not be empty"
assert "Apple" in response or "apple" in response, "Should mention Apple"
logger.info("✅ TEST 4 PASSED: Entity extraction works\n")
return True
except Exception as e:
logger.error(f"❌ TEST 4 FAILED: {e}")
import traceback
traceback.print_exc()
return False
@pytest.mark.asyncio
async def test_config_loading():
"""Test 5: Configuration loading from .env"""
logger.info("=" * 60)
logger.info("TEST 5: Configuration loading from .env")
logger.info("=" * 60)
llm_model = os.getenv("LLM_MODEL", "not-set")
llm_binding = os.getenv("LLM_BINDING", "not-set")
embedding_model = os.getenv("EMBEDDING_MODEL", "not-set")
embedding_binding = os.getenv("EMBEDDING_BINDING", "not-set")
logger.info(f"LLM_MODEL: {llm_model}")
logger.info(f"LLM_BINDING: {llm_binding}")
logger.info(f"EMBEDDING_MODEL: {embedding_model}")
logger.info(f"EMBEDDING_BINDING: {embedding_binding}")
# Verify we're using OpenAI
assert embedding_binding == "openai" or embedding_binding == "not-set", \
"EMBEDDING_BINDING should be openai"
assert llm_binding == "openai" or llm_binding == "not-set", \
"LLM_BINDING should be openai"
logger.info("✅ TEST 5 PASSED: Configuration loaded correctly\n")
return True
async def _run_all_tests():
"""Run all tests (internal helper, not picked up by pytest)"""
logger.info("\n" + "=" * 60)
logger.info("GPT-5-NANO COMPATIBILITY TEST SUITE")
logger.info("=" * 60 + "\n")
# Check prerequisites
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.error("❌ OPENAI_API_KEY environment variable not set")
return False
results = {
"Parameter Normalization": await test_parameter_normalization(),
"Configuration Loading": await test_config_loading(),
"Embeddings": await test_embeddings(),
"Simple Completion": await test_simple_completion(),
"Entity Extraction": await test_extraction_with_gpt5nano(),
}
# Summary
logger.info("=" * 60)
logger.info("TEST SUMMARY")
logger.info("=" * 60)
for test_name, result in results.items():
status = "✅ PASSED" if result else "❌ FAILED"
logger.info(f"{test_name}: {status}")
all_passed = all(results.values())
if all_passed:
logger.info("\n" + "=" * 60)
logger.info("🎉 ALL TESTS PASSED")
logger.info("=" * 60)
else:
logger.info("\n" + "=" * 60)
logger.info("⚠️ SOME TESTS FAILED")
logger.info("=" * 60)
return all_passed
if __name__ == "__main__":
# Load environment from .env file
from dotenv import load_dotenv
load_dotenv(dotenv_path=".env", override=False)
# Run tests
success = asyncio.run(_run_all_tests())
sys.exit(0 if success else 1)