• Add specific exception types • Implement proper retry mechanism • Better error classification • Enhanced logging and validation • Enable embedding retry decorator
483 lines
17 KiB
Python
483 lines
17 KiB
Python
import copy
|
|
import os
|
|
import json
|
|
import logging
|
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
|
|
|
if not pm.is_installed("aioboto3"):
|
|
pm.install("aioboto3")
|
|
import aioboto3
|
|
import numpy as np
|
|
from tenacity import (
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
retry_if_exception_type,
|
|
)
|
|
|
|
import sys
|
|
from lightrag.utils import wrap_embedding_func_with_attrs
|
|
|
|
if sys.version_info < (3, 9):
|
|
from typing import AsyncIterator
|
|
else:
|
|
from collections.abc import AsyncIterator
|
|
from typing import Union
|
|
|
|
# Import botocore exceptions for proper exception handling
|
|
try:
|
|
from botocore.exceptions import (
|
|
ClientError,
|
|
ConnectionError as BotocoreConnectionError,
|
|
ReadTimeoutError,
|
|
)
|
|
except ImportError:
|
|
# If botocore is not installed, define placeholders
|
|
ClientError = Exception
|
|
BotocoreConnectionError = Exception
|
|
ReadTimeoutError = Exception
|
|
|
|
|
|
class BedrockError(Exception):
|
|
"""Generic error for issues related to Amazon Bedrock"""
|
|
|
|
|
|
class BedrockRateLimitError(BedrockError):
|
|
"""Error for rate limiting and throttling issues"""
|
|
|
|
|
|
class BedrockConnectionError(BedrockError):
|
|
"""Error for network and connection issues"""
|
|
|
|
|
|
class BedrockTimeoutError(BedrockError):
|
|
"""Error for timeout issues"""
|
|
|
|
|
|
def _set_env_if_present(key: str, value):
|
|
"""Set environment variable only if a non-empty value is provided."""
|
|
if value is not None and value != "":
|
|
os.environ[key] = value
|
|
|
|
|
|
def _handle_bedrock_exception(e: Exception, operation: str = "Bedrock API") -> None:
|
|
"""Convert AWS Bedrock exceptions to appropriate custom exceptions.
|
|
|
|
Args:
|
|
e: The exception to handle
|
|
operation: Description of the operation for error messages
|
|
|
|
Raises:
|
|
BedrockRateLimitError: For rate limiting and throttling issues (retryable)
|
|
BedrockConnectionError: For network and server issues (retryable)
|
|
BedrockTimeoutError: For timeout issues (retryable)
|
|
BedrockError: For validation and other non-retryable errors
|
|
"""
|
|
error_message = str(e)
|
|
|
|
# Handle botocore ClientError with specific error codes
|
|
if isinstance(e, ClientError):
|
|
error_code = e.response.get("Error", {}).get("Code", "")
|
|
error_msg = e.response.get("Error", {}).get("Message", error_message)
|
|
|
|
# Rate limiting and throttling errors (retryable)
|
|
if error_code in [
|
|
"ThrottlingException",
|
|
"ProvisionedThroughputExceededException",
|
|
]:
|
|
logging.error(f"{operation} rate limit error: {error_msg}")
|
|
raise BedrockRateLimitError(f"Rate limit error: {error_msg}")
|
|
|
|
# Server errors (retryable)
|
|
elif error_code in ["ServiceUnavailableException", "InternalServerException"]:
|
|
logging.error(f"{operation} connection error: {error_msg}")
|
|
raise BedrockConnectionError(f"Service error: {error_msg}")
|
|
|
|
# Check for 5xx HTTP status codes (retryable)
|
|
elif e.response.get("ResponseMetadata", {}).get("HTTPStatusCode", 0) >= 500:
|
|
logging.error(f"{operation} server error: {error_msg}")
|
|
raise BedrockConnectionError(f"Server error: {error_msg}")
|
|
|
|
# Validation and other client errors (non-retryable)
|
|
else:
|
|
logging.error(f"{operation} client error: {error_msg}")
|
|
raise BedrockError(f"Client error: {error_msg}")
|
|
|
|
# Connection errors (retryable)
|
|
elif isinstance(e, BotocoreConnectionError):
|
|
logging.error(f"{operation} connection error: {error_message}")
|
|
raise BedrockConnectionError(f"Connection error: {error_message}")
|
|
|
|
# Timeout errors (retryable)
|
|
elif isinstance(e, (ReadTimeoutError, TimeoutError)):
|
|
logging.error(f"{operation} timeout error: {error_message}")
|
|
raise BedrockTimeoutError(f"Timeout error: {error_message}")
|
|
|
|
# Custom Bedrock errors (already properly typed)
|
|
elif isinstance(
|
|
e,
|
|
(
|
|
BedrockRateLimitError,
|
|
BedrockConnectionError,
|
|
BedrockTimeoutError,
|
|
BedrockError,
|
|
),
|
|
):
|
|
raise
|
|
|
|
# Unknown errors (non-retryable)
|
|
else:
|
|
logging.error(f"{operation} unexpected error: {error_message}")
|
|
raise BedrockError(f"Unexpected error: {error_message}")
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(5),
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
retry=(
|
|
retry_if_exception_type(BedrockRateLimitError)
|
|
| retry_if_exception_type(BedrockConnectionError)
|
|
| retry_if_exception_type(BedrockTimeoutError)
|
|
),
|
|
)
|
|
async def bedrock_complete_if_cache(
|
|
model,
|
|
prompt,
|
|
system_prompt=None,
|
|
history_messages=[],
|
|
enable_cot: bool = False,
|
|
aws_access_key_id=None,
|
|
aws_secret_access_key=None,
|
|
aws_session_token=None,
|
|
**kwargs,
|
|
) -> Union[str, AsyncIterator[str]]:
|
|
if enable_cot:
|
|
import logging
|
|
|
|
logging.debug(
|
|
"enable_cot=True is not supported for Bedrock and will be ignored."
|
|
)
|
|
# Respect existing env; only set if a non-empty value is available
|
|
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
|
|
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
|
|
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
|
|
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
|
|
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
|
|
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
|
|
# Region handling: prefer env, else kwarg (optional)
|
|
region = os.environ.get("AWS_REGION") or kwargs.pop("aws_region", None)
|
|
kwargs.pop("hashing_kv", None)
|
|
# Capture stream flag (if provided) and remove from kwargs since it's not a Bedrock API parameter
|
|
# We'll use this to determine whether to call converse_stream or converse
|
|
stream = bool(kwargs.pop("stream", False))
|
|
# Remove unsupported args for Bedrock Converse API
|
|
for k in [
|
|
"response_format",
|
|
"tools",
|
|
"tool_choice",
|
|
"seed",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"n",
|
|
"logprobs",
|
|
"top_logprobs",
|
|
"max_completion_tokens",
|
|
"response_format",
|
|
]:
|
|
kwargs.pop(k, None)
|
|
# Fix message history format
|
|
messages = []
|
|
for history_message in history_messages:
|
|
message = copy.copy(history_message)
|
|
message["content"] = [{"text": message["content"]}]
|
|
messages.append(message)
|
|
|
|
# Add user prompt
|
|
messages.append({"role": "user", "content": [{"text": prompt}]})
|
|
|
|
# Initialize Converse API arguments
|
|
args = {"modelId": model, "messages": messages}
|
|
|
|
# Define system prompt
|
|
if system_prompt:
|
|
args["system"] = [{"text": system_prompt}]
|
|
|
|
# Map and set up inference parameters
|
|
inference_params_map = {
|
|
"max_tokens": "maxTokens",
|
|
"top_p": "topP",
|
|
"stop_sequences": "stopSequences",
|
|
}
|
|
if inference_params := list(
|
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
|
):
|
|
args["inferenceConfig"] = {}
|
|
for param in inference_params:
|
|
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
|
kwargs.pop(param)
|
|
)
|
|
|
|
# Import logging for error handling
|
|
import logging
|
|
|
|
# For streaming responses, we need a different approach to keep the connection open
|
|
if stream:
|
|
# Create a session that will be used throughout the streaming process
|
|
session = aioboto3.Session()
|
|
client = None
|
|
|
|
# Define the generator function that will manage the client lifecycle
|
|
async def stream_generator():
|
|
nonlocal client
|
|
|
|
# Create the client outside the generator to ensure it stays open
|
|
client = await session.client(
|
|
"bedrock-runtime", region_name=region
|
|
).__aenter__()
|
|
event_stream = None
|
|
iteration_started = False
|
|
|
|
try:
|
|
# Make the API call
|
|
response = await client.converse_stream(**args, **kwargs)
|
|
event_stream = response.get("stream")
|
|
iteration_started = True
|
|
|
|
# Process the stream
|
|
async for event in event_stream:
|
|
# Validate event structure
|
|
if not event or not isinstance(event, dict):
|
|
continue
|
|
|
|
if "contentBlockDelta" in event:
|
|
delta = event["contentBlockDelta"].get("delta", {})
|
|
text = delta.get("text")
|
|
if text:
|
|
yield text
|
|
# Handle other event types that might indicate stream end
|
|
elif "messageStop" in event:
|
|
break
|
|
|
|
except Exception as e:
|
|
# Try to clean up resources if possible
|
|
if (
|
|
iteration_started
|
|
and event_stream
|
|
and hasattr(event_stream, "aclose")
|
|
and callable(getattr(event_stream, "aclose", None))
|
|
):
|
|
try:
|
|
await event_stream.aclose()
|
|
except Exception as close_error:
|
|
logging.warning(
|
|
f"Failed to close Bedrock event stream: {close_error}"
|
|
)
|
|
|
|
# Convert to appropriate exception type
|
|
_handle_bedrock_exception(e, "Bedrock streaming")
|
|
|
|
finally:
|
|
# Clean up the event stream
|
|
if (
|
|
iteration_started
|
|
and event_stream
|
|
and hasattr(event_stream, "aclose")
|
|
and callable(getattr(event_stream, "aclose", None))
|
|
):
|
|
try:
|
|
await event_stream.aclose()
|
|
except Exception as close_error:
|
|
logging.warning(
|
|
f"Failed to close Bedrock event stream in finally block: {close_error}"
|
|
)
|
|
|
|
# Clean up the client
|
|
if client:
|
|
try:
|
|
await client.__aexit__(None, None, None)
|
|
except Exception as client_close_error:
|
|
logging.warning(
|
|
f"Failed to close Bedrock client: {client_close_error}"
|
|
)
|
|
|
|
# Return the generator that manages its own lifecycle
|
|
return stream_generator()
|
|
|
|
# For non-streaming responses, use the standard async context manager pattern
|
|
session = aioboto3.Session()
|
|
async with session.client(
|
|
"bedrock-runtime", region_name=region
|
|
) as bedrock_async_client:
|
|
try:
|
|
# Use converse for non-streaming responses
|
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
|
|
|
# Validate response structure
|
|
if (
|
|
not response
|
|
or "output" not in response
|
|
or "message" not in response["output"]
|
|
or "content" not in response["output"]["message"]
|
|
or not response["output"]["message"]["content"]
|
|
):
|
|
raise BedrockError("Invalid response structure from Bedrock API")
|
|
|
|
content = response["output"]["message"]["content"][0]["text"]
|
|
|
|
if not content or content.strip() == "":
|
|
raise BedrockError("Received empty content from Bedrock API")
|
|
|
|
return content
|
|
|
|
except Exception as e:
|
|
# Convert to appropriate exception type
|
|
_handle_bedrock_exception(e, "Bedrock converse")
|
|
|
|
|
|
# Generic Bedrock completion function
|
|
async def bedrock_complete(
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
) -> Union[str, AsyncIterator[str]]:
|
|
kwargs.pop("keyword_extraction", None)
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
|
result = await bedrock_complete_if_cache(
|
|
model_name,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
return result
|
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
@retry(
|
|
stop=stop_after_attempt(5),
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
retry=(
|
|
retry_if_exception_type(BedrockRateLimitError)
|
|
| retry_if_exception_type(BedrockConnectionError)
|
|
| retry_if_exception_type(BedrockTimeoutError)
|
|
),
|
|
)
|
|
async def bedrock_embed(
|
|
texts: list[str],
|
|
model: str = "amazon.titan-embed-text-v2:0",
|
|
aws_access_key_id=None,
|
|
aws_secret_access_key=None,
|
|
aws_session_token=None,
|
|
) -> np.ndarray:
|
|
# Respect existing env; only set if a non-empty value is available
|
|
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
|
|
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
|
|
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
|
|
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
|
|
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
|
|
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
|
|
|
|
# Region handling: prefer env
|
|
region = os.environ.get("AWS_REGION")
|
|
|
|
session = aioboto3.Session()
|
|
async with session.client(
|
|
"bedrock-runtime", region_name=region
|
|
) as bedrock_async_client:
|
|
try:
|
|
if (model_provider := model.split(".")[0]) == "amazon":
|
|
embed_texts = []
|
|
for text in texts:
|
|
try:
|
|
if "v2" in model:
|
|
body = json.dumps(
|
|
{
|
|
"inputText": text,
|
|
# 'dimensions': embedding_dim,
|
|
"embeddingTypes": ["float"],
|
|
}
|
|
)
|
|
elif "v1" in model:
|
|
body = json.dumps({"inputText": text})
|
|
else:
|
|
raise BedrockError(f"Model {model} is not supported!")
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
modelId=model,
|
|
body=body,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
response_body = await response.get("body").json()
|
|
|
|
# Validate response structure
|
|
if not response_body or "embedding" not in response_body:
|
|
raise BedrockError(
|
|
f"Invalid embedding response structure for text: {text[:50]}..."
|
|
)
|
|
|
|
embedding = response_body["embedding"]
|
|
if not embedding:
|
|
raise BedrockError(
|
|
f"Received empty embedding for text: {text[:50]}..."
|
|
)
|
|
|
|
embed_texts.append(embedding)
|
|
|
|
except Exception as e:
|
|
# Convert to appropriate exception type
|
|
_handle_bedrock_exception(
|
|
e, "Bedrock embedding (amazon, text chunk)"
|
|
)
|
|
|
|
elif model_provider == "cohere":
|
|
try:
|
|
body = json.dumps(
|
|
{
|
|
"texts": texts,
|
|
"input_type": "search_document",
|
|
"truncate": "NONE",
|
|
}
|
|
)
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
model=model,
|
|
body=body,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
response_body = json.loads(response.get("body").read())
|
|
|
|
# Validate response structure
|
|
if not response_body or "embeddings" not in response_body:
|
|
raise BedrockError(
|
|
"Invalid embedding response structure from Cohere"
|
|
)
|
|
|
|
embeddings = response_body["embeddings"]
|
|
if not embeddings or len(embeddings) != len(texts):
|
|
raise BedrockError(
|
|
f"Invalid embeddings count: expected {len(texts)}, got {len(embeddings) if embeddings else 0}"
|
|
)
|
|
|
|
embed_texts = embeddings
|
|
|
|
except Exception as e:
|
|
# Convert to appropriate exception type
|
|
_handle_bedrock_exception(e, "Bedrock embedding (cohere)")
|
|
|
|
else:
|
|
raise BedrockError(
|
|
f"Model provider '{model_provider}' is not supported!"
|
|
)
|
|
|
|
# Final validation
|
|
if not embed_texts:
|
|
raise BedrockError("No embeddings generated")
|
|
|
|
return np.array(embed_texts)
|
|
|
|
except Exception as e:
|
|
# Convert to appropriate exception type
|
|
_handle_bedrock_exception(e, "Bedrock embedding")
|