LightRAG/lightrag/llm/nvidia_openai.py
clssck dd1413f3eb test(lightrag,examples): add prompt accuracy and quality tests
Add comprehensive test suites for prompt evaluation:
- test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy
- test_prompt_quality_deep.py: 672 lines for deep quality analysis
- Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py)
- Apply ruff formatting and type hints across 30 files
- Update pyrightconfig.json for static type checking
- Modernize reproduce scripts and examples with improved type annotations
- Sync uv.lock dependencies
2025-12-05 16:39:52 +01:00

55 lines
1.6 KiB
Python

import os
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('openai'):
pm.install('openai')
from typing import Literal
import numpy as np
from openai import (
APIConnectionError,
APITimeoutError,
AsyncOpenAI,
RateLimitError,
)
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
)
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def nvidia_openai_embed(
texts: list[str],
model: str = 'nvidia/llama-3.2-nv-embedqa-1b-v1',
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
base_url: str = 'https://integrate.api.nvidia.com/v1',
api_key: str | None = None,
input_type: str = 'passage', # query for retrieval, passage for embedding
trunc: str = 'NONE', # NONE or START or END
encode: Literal['float', 'base64'] = 'float', # float or base64
) -> np.ndarray:
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
response = await openai_async_client.embeddings.create(
model=model,
input=texts,
encoding_format=encode,
extra_body={'input_type': input_type, 'truncate': trunc},
)
return np.array([dp.embedding for dp in response.data])