LightRAG/lightrag/llm/deprecated/siliconcloud.py
clssck dd1413f3eb test(lightrag,examples): add prompt accuracy and quality tests
Add comprehensive test suites for prompt evaluation:
- test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy
- test_prompt_quality_deep.py: 672 lines for deep quality analysis
- Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py)
- Apply ruff formatting and type hints across 30 files
- Update pyrightconfig.json for static type checking
- Modernize reproduce scripts and examples with improved type annotations
- Sync uv.lock dependencies
2025-12-05 16:39:52 +01:00

75 lines
2.5 KiB
Python

import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('lmdeploy'):
pm.install('lmdeploy')
import base64
import struct
import aiohttp
import numpy as np
from lightrag.utils import logger
from openai import (
APIConnectionError,
APITimeoutError,
RateLimitError,
)
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def siliconcloud_embedding(
texts: list[str],
model: str = 'netease-youdao/bce-embedding-base_v1',
base_url: str = 'https://api.siliconflow.cn/v1/embeddings',
max_token_size: int = 8192,
api_key: str | None = None,
encoding_format: str = 'base64',
) -> np.ndarray:
logger.debug(f'siliconcloud_embedding called with {len(texts)} texts, model={model}, encoding={encoding_format}')
if api_key and not api_key.startswith('Bearer '):
api_key = 'Bearer ' + api_key
headers = {'Authorization': api_key, 'Content-Type': 'application/json'}
truncate_texts = [text[0:max_token_size] for text in texts]
payload = {'model': model, 'input': truncate_texts, 'encoding_format': encoding_format}
async with (
aiohttp.ClientSession() as session,
session.post(base_url, headers=headers, json=payload) as response,
):
try:
content = await response.json()
except Exception as exc:
logger.error(f'Failed to parse siliconcloud response: {exc}')
raise
if 'code' in content:
logger.error(f'API error response: {content}')
raise ValueError(content)
if encoding_format == 'base64':
base64_strings = [item['embedding'] for item in content['data']]
embeddings = []
for string in base64_strings:
decode_bytes = base64.b64decode(string)
n = len(decode_bytes) // 4
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
embeddings.append(float_array)
logger.debug(f'Decoded {len(embeddings)} embeddings from base64')
return np.array(embeddings)
embeddings = np.array([item['embedding'] for item in content['data']])
logger.debug(f'Returned {len(embeddings)} embeddings (raw format)')
return embeddings