LightRAG/monitor_pipeline.py
clssck da9070ecf7 refactor: remove legacy storage implementations and k8s deployment
Remove deprecated storage backends and Kubernetes deployment configuration:
- Delete unused storage implementations: FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis
- Remove Kubernetes deployment manifests and installation scripts
- Delete legacy examples for deprecated backends
- Consolidate to PostgreSQL-only storage backend
Streamline dependencies and add new capabilities:
- Remove deprecated code documentation and migration guides
- Add full-text search caching layer with FTS cache module
- Implement metrics collection and monitoring pipeline
- Add explain and metrics API routes
- Simplify configuration with PostgreSQL-focused setup
Update documentation and configuration:
- Rewrite README to focus on supported features
- Update environment and configuration examples
- Remove Kubernetes-specific documentation
- Add new utility scripts for PDF uploads and pipeline monitoring
2025-12-09 14:02:00 +01:00

34 lines
1.1 KiB
Python

#!/usr/bin/env python3
"""Monitor LightRAG pipeline processing status."""
import time
import requests
API_URL = "http://localhost:9621"
def monitor():
print("Monitoring LightRAG pipeline processing...")
while True:
try:
resp = requests.get(f"{API_URL}/documents/pipeline_status", timeout=10)
status = resp.json()
busy = status.get("busy", False)
pending = status.get("request_pending", False)
msg = status.get("latest_message", "")[:80]
batch = f"{status.get('cur_batch', 0)}/{status.get('batchs', 0)}"
print(f"[{time.strftime('%H:%M:%S')}] batch={batch} busy={busy} pending={pending} | {msg}")
if not busy and not pending:
print("\n✅ Pipeline complete!")
# Check document count
docs_resp = requests.get(f"{API_URL}/documents", timeout=10)
docs = docs_resp.json()
print(f"Documents indexed: {len(docs.get('documents', []))}")
break
except Exception as e:
print(f"Error: {e}")
time.sleep(10)
if __name__ == "__main__":
monitor()