LightRAG/lightrag/cache/__init__.py
clssck da9070ecf7 refactor: remove legacy storage implementations and k8s deployment
Remove deprecated storage backends and Kubernetes deployment configuration:
- Delete unused storage implementations: FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis
- Remove Kubernetes deployment manifests and installation scripts
- Delete legacy examples for deprecated backends
- Consolidate to PostgreSQL-only storage backend
Streamline dependencies and add new capabilities:
- Remove deprecated code documentation and migration guides
- Add full-text search caching layer with FTS cache module
- Implement metrics collection and monitoring pipeline
- Add explain and metrics API routes
- Simplify configuration with PostgreSQL-focused setup
Update documentation and configuration:
- Rewrite README to focus on supported features
- Update environment and configuration examples
- Remove Kubernetes-specific documentation
- Add new utility scripts for PDF uploads and pipeline monitoring
2025-12-09 14:02:00 +01:00

24 lines
534 B
Python

"""
LightRAG caching infrastructure.
This module provides caching implementations for various LightRAG components:
- fts_cache: Full-text search result caching
"""
from .fts_cache import (
get_cached_fts_results,
store_fts_results,
invalidate_fts_cache_for_workspace,
FTS_CACHE_ENABLED,
FTS_CACHE_TTL,
FTS_CACHE_MAX_SIZE,
)
__all__ = [
'get_cached_fts_results',
'store_fts_results',
'invalidate_fts_cache_for_workspace',
'FTS_CACHE_ENABLED',
'FTS_CACHE_TTL',
'FTS_CACHE_MAX_SIZE',
]