LightRAG/lightrag/tools/clean_llm_query_cache.py

1139 lines
40 KiB
Python

#!/usr/bin/env python3
"""
LLM Query Cache Cleanup Tool for LightRAG
This tool cleans up LLM query cache (mix:*, hybrid:*, local:*, global:*)
from KV storage implementations while preserving workspace isolation.
Usage:
python -m lightrag.tools.clean_llm_query_cache
# or
python lightrag/tools/clean_llm_query_cache.py
Supported KV Storage Types:
- JsonKVStorage
- RedisKVStorage
- PGKVStorage
- MongoKVStorage
"""
import asyncio
import os
import sys
import time
from typing import Any, Dict, List
from dataclasses import dataclass, field
from dotenv import load_dotenv
# Add project root to path for imports
sys.path.insert(
0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
from lightrag.kg.shared_storage import set_all_update_flags
from lightrag.namespace import NameSpace
from lightrag.utils import setup_logger
# Load environment variables
load_dotenv(dotenv_path=".env", override=False)
# Setup logger
setup_logger("lightrag", level="INFO")
# Storage type configurations
STORAGE_TYPES = {
"1": "JsonKVStorage",
"2": "RedisKVStorage",
"3": "PGKVStorage",
"4": "MongoKVStorage",
}
# Workspace environment variable mapping
WORKSPACE_ENV_MAP = {
"PGKVStorage": "POSTGRES_WORKSPACE",
"MongoKVStorage": "MONGODB_WORKSPACE",
"RedisKVStorage": "REDIS_WORKSPACE",
}
# Query cache modes
QUERY_MODES = ["mix", "hybrid", "local", "global"]
# Query cache types
CACHE_TYPES = ["query", "keywords"]
# Default batch size for deletion
DEFAULT_BATCH_SIZE = 1000
# ANSI color codes for terminal output
BOLD_CYAN = "\033[1;36m"
BOLD_RED = "\033[1;31m"
BOLD_GREEN = "\033[1;32m"
RESET = "\033[0m"
@dataclass
class CleanupStats:
"""Cleanup statistics and error tracking"""
# Count by mode and cache_type before cleanup
counts_before: Dict[str, Dict[str, int]] = field(default_factory=dict)
# Deletion statistics
total_to_delete: int = 0
total_batches: int = 0
successful_batches: int = 0
failed_batches: int = 0
successfully_deleted: int = 0
failed_to_delete: int = 0
# Count by mode and cache_type after cleanup
counts_after: Dict[str, Dict[str, int]] = field(default_factory=dict)
# Error tracking
errors: List[Dict[str, Any]] = field(default_factory=list)
def add_error(self, batch_idx: int, error: Exception, batch_size: int):
"""Record batch error"""
self.errors.append(
{
"batch": batch_idx,
"error_type": type(error).__name__,
"error_msg": str(error),
"records_lost": batch_size,
"timestamp": time.time(),
}
)
self.failed_batches += 1
self.failed_to_delete += batch_size
def initialize_counts(self):
"""Initialize count dictionaries"""
for mode in QUERY_MODES:
self.counts_before[mode] = {"query": 0, "keywords": 0}
self.counts_after[mode] = {"query": 0, "keywords": 0}
class CleanupTool:
"""LLM Query Cache Cleanup Tool"""
def __init__(self):
self.storage = None
self.workspace = ""
self.batch_size = DEFAULT_BATCH_SIZE
def get_workspace_for_storage(self, storage_name: str) -> str:
"""Get workspace for a specific storage type
Priority: Storage-specific env var > WORKSPACE env var > empty string
Args:
storage_name: Storage implementation name
Returns:
Workspace name
"""
# Check storage-specific workspace
if storage_name in WORKSPACE_ENV_MAP:
specific_workspace = os.getenv(WORKSPACE_ENV_MAP[storage_name])
if specific_workspace:
return specific_workspace
# Check generic WORKSPACE
workspace = os.getenv("WORKSPACE", "")
return workspace
def check_config_ini_for_storage(self, storage_name: str) -> bool:
"""Check if config.ini has configuration for the storage type
Args:
storage_name: Storage implementation name
Returns:
True if config.ini has the necessary configuration
"""
try:
import configparser
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
if storage_name == "RedisKVStorage":
return config.has_option("redis", "uri")
elif storage_name == "PGKVStorage":
return (
config.has_option("postgres", "user")
and config.has_option("postgres", "password")
and config.has_option("postgres", "database")
)
elif storage_name == "MongoKVStorage":
return config.has_option("mongodb", "uri") and config.has_option(
"mongodb", "database"
)
return False
except Exception:
return False
def check_env_vars(self, storage_name: str) -> bool:
"""Check environment variables, show warnings if missing but don't fail
Args:
storage_name: Storage implementation name
Returns:
Always returns True (warnings only, no hard failure)
"""
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
if not required_vars:
print("✓ No environment variables required")
return True
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
print(
f"⚠️ Warning: Missing environment variables: {', '.join(missing_vars)}"
)
# Check if config.ini has configuration
has_config = self.check_config_ini_for_storage(storage_name)
if has_config:
print(" ✓ Found configuration in config.ini")
else:
print(f" Will attempt to use defaults for {storage_name}")
return True
print("✓ All required environment variables are set")
return True
def get_storage_class(self, storage_name: str):
"""Dynamically import and return storage class
Args:
storage_name: Storage implementation name
Returns:
Storage class
"""
if storage_name == "JsonKVStorage":
from lightrag.kg.json_kv_impl import JsonKVStorage
return JsonKVStorage
elif storage_name == "RedisKVStorage":
from lightrag.kg.redis_impl import RedisKVStorage
return RedisKVStorage
elif storage_name == "PGKVStorage":
from lightrag.kg.postgres_impl import PGKVStorage
return PGKVStorage
elif storage_name == "MongoKVStorage":
from lightrag.kg.mongo_impl import MongoKVStorage
return MongoKVStorage
else:
raise ValueError(f"Unsupported storage type: {storage_name}")
async def initialize_storage(self, storage_name: str, workspace: str):
"""Initialize storage instance with fallback to config.ini and defaults
Args:
storage_name: Storage implementation name
workspace: Workspace name
Returns:
Initialized storage instance
Raises:
Exception: If initialization fails
"""
storage_class = self.get_storage_class(storage_name)
# Create global config
global_config = {
"working_dir": os.getenv("WORKING_DIR", "./rag_storage"),
"embedding_batch_num": 10,
}
# Initialize storage
storage = storage_class(
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
workspace=workspace,
global_config=global_config,
embedding_func=None,
)
# Initialize the storage (may raise exception if connection fails)
await storage.initialize()
return storage
async def count_query_caches_json(self, storage) -> Dict[str, Dict[str, int]]:
"""Count query caches in JsonKVStorage by mode and cache_type
Args:
storage: JsonKVStorage instance
Returns:
Dictionary with counts for each mode and cache_type
"""
counts = {mode: {"query": 0, "keywords": 0} for mode in QUERY_MODES}
async with storage._storage_lock:
for key in storage._data.keys():
for mode in QUERY_MODES:
if key.startswith(f"{mode}:query:"):
counts[mode]["query"] += 1
elif key.startswith(f"{mode}:keywords:"):
counts[mode]["keywords"] += 1
return counts
async def count_query_caches_redis(self, storage) -> Dict[str, Dict[str, int]]:
"""Count query caches in RedisKVStorage by mode and cache_type
Args:
storage: RedisKVStorage instance
Returns:
Dictionary with counts for each mode and cache_type
"""
counts = {mode: {"query": 0, "keywords": 0} for mode in QUERY_MODES}
print("Scanning Redis keys...", end="", flush=True)
async with storage._get_redis_connection() as redis:
for mode in QUERY_MODES:
for cache_type in CACHE_TYPES:
pattern = f"{mode}:{cache_type}:*"
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=prefixed_pattern, count=DEFAULT_BATCH_SIZE
)
counts[mode][cache_type] += len(keys)
if cursor == 0:
break
print() # New line after progress
return counts
async def count_query_caches_pg(self, storage) -> Dict[str, Dict[str, int]]:
"""Count query caches in PostgreSQL by mode and cache_type
Args:
storage: PGKVStorage instance
Returns:
Dictionary with counts for each mode and cache_type
"""
from lightrag.kg.postgres_impl import namespace_to_table_name
counts = {mode: {"query": 0, "keywords": 0} for mode in QUERY_MODES}
table_name = namespace_to_table_name(storage.namespace)
print("Counting PostgreSQL records...", end="", flush=True)
start_time = time.time()
for mode in QUERY_MODES:
for cache_type in CACHE_TYPES:
query = f"""
SELECT COUNT(*) as count
FROM {table_name}
WHERE workspace = $1
AND id LIKE $2
"""
pattern = f"{mode}:{cache_type}:%"
result = await storage.db.query(query, [storage.workspace, pattern])
counts[mode][cache_type] = result["count"] if result else 0
elapsed = time.time() - start_time
if elapsed > 1:
print(f" (took {elapsed:.1f}s)", end="")
print() # New line
return counts
async def count_query_caches_mongo(self, storage) -> Dict[str, Dict[str, int]]:
"""Count query caches in MongoDB by mode and cache_type
Args:
storage: MongoKVStorage instance
Returns:
Dictionary with counts for each mode and cache_type
"""
counts = {mode: {"query": 0, "keywords": 0} for mode in QUERY_MODES}
print("Counting MongoDB documents...", end="", flush=True)
start_time = time.time()
for mode in QUERY_MODES:
for cache_type in CACHE_TYPES:
pattern = f"^{mode}:{cache_type}:"
query = {"_id": {"$regex": pattern}}
count = await storage._data.count_documents(query)
counts[mode][cache_type] = count
elapsed = time.time() - start_time
if elapsed > 1:
print(f" (took {elapsed:.1f}s)", end="")
print() # New line
return counts
async def count_query_caches(
self, storage, storage_name: str
) -> Dict[str, Dict[str, int]]:
"""Count query caches from any storage type efficiently
Args:
storage: Storage instance
storage_name: Storage type name
Returns:
Dictionary with counts for each mode and cache_type
"""
if storage_name == "JsonKVStorage":
return await self.count_query_caches_json(storage)
elif storage_name == "RedisKVStorage":
return await self.count_query_caches_redis(storage)
elif storage_name == "PGKVStorage":
return await self.count_query_caches_pg(storage)
elif storage_name == "MongoKVStorage":
return await self.count_query_caches_mongo(storage)
else:
raise ValueError(f"Unsupported storage type: {storage_name}")
async def delete_query_caches_json(
self, storage, cleanup_type: str, stats: CleanupStats
):
"""Delete query caches from JsonKVStorage
Args:
storage: JsonKVStorage instance
cleanup_type: 'all', 'query', or 'keywords'
stats: CleanupStats object to track progress
"""
# Collect keys to delete
async with storage._storage_lock:
keys_to_delete = []
for key in storage._data.keys():
should_delete = False
for mode in QUERY_MODES:
if cleanup_type == "all":
if key.startswith(f"{mode}:query:") or key.startswith(
f"{mode}:keywords:"
):
should_delete = True
elif cleanup_type == "query":
if key.startswith(f"{mode}:query:"):
should_delete = True
elif cleanup_type == "keywords":
if key.startswith(f"{mode}:keywords:"):
should_delete = True
if should_delete:
keys_to_delete.append(key)
# Delete in batches
total_keys = len(keys_to_delete)
stats.total_batches = (total_keys + self.batch_size - 1) // self.batch_size
print("\n=== Starting Cleanup ===")
print(
f"💡 Processing {self.batch_size:,} records at a time from JsonKVStorage\n"
)
for batch_idx in range(stats.total_batches):
start_idx = batch_idx * self.batch_size
end_idx = min((batch_idx + 1) * self.batch_size, total_keys)
batch_keys = keys_to_delete[start_idx:end_idx]
try:
async with storage._storage_lock:
for key in batch_keys:
del storage._data[key]
# CRITICAL: Set update flag so changes persist to disk
# Without this, deletions remain in-memory only and are lost on exit
await set_all_update_flags(
storage.namespace, workspace=storage.workspace
)
# Success
stats.successful_batches += 1
stats.successfully_deleted += len(batch_keys)
# Calculate progress
progress = (stats.successfully_deleted / total_keys) * 100
bar_length = 20
filled_length = int(
bar_length * stats.successfully_deleted // total_keys
)
bar = "" * filled_length + "" * (bar_length - filled_length)
print(
f"Batch {batch_idx + 1}/{stats.total_batches}: {bar} "
f"{stats.successfully_deleted:,}/{total_keys:,} ({progress:.1f}%) ✓"
)
except Exception as e:
stats.add_error(batch_idx + 1, e, len(batch_keys))
print(
f"Batch {batch_idx + 1}/{stats.total_batches}: ✗ FAILED - "
f"{type(e).__name__}: {str(e)}"
)
async def delete_query_caches_redis(
self, storage, cleanup_type: str, stats: CleanupStats
):
"""Delete query caches from RedisKVStorage
Args:
storage: RedisKVStorage instance
cleanup_type: 'all', 'query', or 'keywords'
stats: CleanupStats object to track progress
"""
# Build patterns to delete
patterns = []
for mode in QUERY_MODES:
if cleanup_type == "all":
patterns.append(f"{mode}:query:*")
patterns.append(f"{mode}:keywords:*")
elif cleanup_type == "query":
patterns.append(f"{mode}:query:*")
elif cleanup_type == "keywords":
patterns.append(f"{mode}:keywords:*")
print("\n=== Starting Cleanup ===")
print(f"💡 Processing Redis keys in batches of {self.batch_size:,}\n")
batch_idx = 0
total_deleted = 0
async with storage._get_redis_connection() as redis:
for pattern in patterns:
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=prefixed_pattern, count=self.batch_size
)
if keys:
batch_idx += 1
stats.total_batches += 1
try:
# Delete batch using pipeline
pipe = redis.pipeline()
for key in keys:
pipe.delete(key)
await pipe.execute()
# Success
stats.successful_batches += 1
stats.successfully_deleted += len(keys)
total_deleted += len(keys)
# Progress
print(
f"Batch {batch_idx}: Deleted {len(keys):,} keys "
f"(Total: {total_deleted:,}) ✓"
)
except Exception as e:
stats.add_error(batch_idx, e, len(keys))
print(
f"Batch {batch_idx}: ✗ FAILED - "
f"{type(e).__name__}: {str(e)}"
)
if cursor == 0:
break
await asyncio.sleep(0)
async def delete_query_caches_pg(
self, storage, cleanup_type: str, stats: CleanupStats
):
"""Delete query caches from PostgreSQL
Args:
storage: PGKVStorage instance
cleanup_type: 'all', 'query', or 'keywords'
stats: CleanupStats object to track progress
"""
from lightrag.kg.postgres_impl import namespace_to_table_name
table_name = namespace_to_table_name(storage.namespace)
# Build WHERE conditions
conditions = []
for mode in QUERY_MODES:
if cleanup_type == "all":
conditions.append(f"id LIKE '{mode}:query:%'")
conditions.append(f"id LIKE '{mode}:keywords:%'")
elif cleanup_type == "query":
conditions.append(f"id LIKE '{mode}:query:%'")
elif cleanup_type == "keywords":
conditions.append(f"id LIKE '{mode}:keywords:%'")
where_clause = " OR ".join(conditions)
print("\n=== Starting Cleanup ===")
print("💡 Executing PostgreSQL DELETE query\n")
try:
query = f"""
DELETE FROM {table_name}
WHERE workspace = $1
AND ({where_clause})
"""
start_time = time.time()
# Fix: Pass dict instead of list for execute() method
await storage.db.execute(query, {"workspace": storage.workspace})
elapsed = time.time() - start_time
# PostgreSQL returns deletion count
stats.total_batches = 1
stats.successful_batches = 1
stats.successfully_deleted = stats.total_to_delete
print(f"✓ Deleted {stats.successfully_deleted:,} records in {elapsed:.2f}s")
except Exception as e:
stats.add_error(1, e, stats.total_to_delete)
print(f"✗ DELETE failed: {type(e).__name__}: {str(e)}")
async def delete_query_caches_mongo(
self, storage, cleanup_type: str, stats: CleanupStats
):
"""Delete query caches from MongoDB
Args:
storage: MongoKVStorage instance
cleanup_type: 'all', 'query', or 'keywords'
stats: CleanupStats object to track progress
"""
# Build regex patterns
patterns = []
for mode in QUERY_MODES:
if cleanup_type == "all":
patterns.append(f"^{mode}:query:")
patterns.append(f"^{mode}:keywords:")
elif cleanup_type == "query":
patterns.append(f"^{mode}:query:")
elif cleanup_type == "keywords":
patterns.append(f"^{mode}:keywords:")
print("\n=== Starting Cleanup ===")
print("💡 Executing MongoDB deleteMany operations\n")
total_deleted = 0
for idx, pattern in enumerate(patterns, 1):
try:
query = {"_id": {"$regex": pattern}}
result = await storage._data.delete_many(query)
deleted_count = result.deleted_count
stats.total_batches += 1
stats.successful_batches += 1
stats.successfully_deleted += deleted_count
total_deleted += deleted_count
print(
f"Pattern {idx}/{len(patterns)}: Deleted {deleted_count:,} records ✓"
)
except Exception as e:
stats.add_error(idx, e, 0)
print(
f"Pattern {idx}/{len(patterns)}: ✗ FAILED - "
f"{type(e).__name__}: {str(e)}"
)
print(f"\nTotal deleted: {total_deleted:,} records")
async def delete_query_caches(
self, storage, storage_name: str, cleanup_type: str, stats: CleanupStats
):
"""Delete query caches from any storage type
Args:
storage: Storage instance
storage_name: Storage type name
cleanup_type: 'all', 'query', or 'keywords'
stats: CleanupStats object to track progress
"""
if storage_name == "JsonKVStorage":
await self.delete_query_caches_json(storage, cleanup_type, stats)
elif storage_name == "RedisKVStorage":
await self.delete_query_caches_redis(storage, cleanup_type, stats)
elif storage_name == "PGKVStorage":
await self.delete_query_caches_pg(storage, cleanup_type, stats)
elif storage_name == "MongoKVStorage":
await self.delete_query_caches_mongo(storage, cleanup_type, stats)
else:
raise ValueError(f"Unsupported storage type: {storage_name}")
def print_header(self):
"""Print tool header"""
print("\n" + "=" * 60)
print("LLM Query Cache Cleanup Tool - LightRAG")
print("=" * 60)
def print_storage_types(self):
"""Print available storage types"""
print("\nSupported KV Storage Types:")
for key, value in STORAGE_TYPES.items():
print(f"[{key}] {value}")
def format_workspace(self, workspace: str) -> str:
"""Format workspace name with highlighting
Args:
workspace: Workspace name (may be empty)
Returns:
Formatted workspace string with ANSI color codes
"""
if workspace:
return f"{BOLD_CYAN}{workspace}{RESET}"
else:
return f"{BOLD_CYAN}(default){RESET}"
def print_cache_statistics(self, counts: Dict[str, Dict[str, int]], title: str):
"""Print cache statistics in a formatted table
Args:
counts: Dictionary with counts for each mode and cache_type
title: Title for the statistics display
"""
print(f"\n{title}")
print("" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "")
print(f"{'Mode':<10}{'Query':>10}{'Keywords':>10}{'Total':>10}")
print("" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "")
total_query = 0
total_keywords = 0
for mode in QUERY_MODES:
query_count = counts[mode]["query"]
keywords_count = counts[mode]["keywords"]
mode_total = query_count + keywords_count
total_query += query_count
total_keywords += keywords_count
print(
f"{mode:<10}{query_count:>10,}{keywords_count:>10,}{mode_total:>10,}"
)
print("" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "")
grand_total = total_query + total_keywords
print(
f"{'Total':<10}{total_query:>10,}{total_keywords:>10,}{grand_total:>10,}"
)
print("" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "" + "" * 12 + "")
def calculate_total_to_delete(
self, counts: Dict[str, Dict[str, int]], cleanup_type: str
) -> int:
"""Calculate total number of records to delete
Args:
counts: Dictionary with counts for each mode and cache_type
cleanup_type: 'all', 'query', or 'keywords'
Returns:
Total number of records to delete
"""
total = 0
for mode in QUERY_MODES:
if cleanup_type == "all":
total += counts[mode]["query"] + counts[mode]["keywords"]
elif cleanup_type == "query":
total += counts[mode]["query"]
elif cleanup_type == "keywords":
total += counts[mode]["keywords"]
return total
def print_cleanup_report(self, stats: CleanupStats):
"""Print comprehensive cleanup report
Args:
stats: CleanupStats object with cleanup results
"""
print("\n" + "=" * 60)
print("Cleanup Complete - Final Report")
print("=" * 60)
# Overall statistics
print("\n📊 Statistics:")
print(f" Total records to delete: {stats.total_to_delete:,}")
print(f" Total batches: {stats.total_batches:,}")
print(f" Successful batches: {stats.successful_batches:,}")
print(f" Failed batches: {stats.failed_batches:,}")
print(f" Successfully deleted: {stats.successfully_deleted:,}")
print(f" Failed to delete: {stats.failed_to_delete:,}")
# Success rate
success_rate = (
(stats.successfully_deleted / stats.total_to_delete * 100)
if stats.total_to_delete > 0
else 0
)
print(f" Success rate: {success_rate:.2f}%")
# Before/After comparison
print("\n📈 Before/After Comparison:")
total_before = sum(
counts["query"] + counts["keywords"]
for counts in stats.counts_before.values()
)
total_after = sum(
counts["query"] + counts["keywords"]
for counts in stats.counts_after.values()
)
print(f" Total caches before: {total_before:,}")
print(f" Total caches after: {total_after:,}")
print(f" Net reduction: {total_before - total_after:,}")
# Error details
if stats.errors:
print(f"\n⚠️ Errors encountered: {len(stats.errors)}")
print("\nError Details:")
print("-" * 60)
# Group errors by type
error_types = {}
for error in stats.errors:
err_type = error["error_type"]
error_types[err_type] = error_types.get(err_type, 0) + 1
print("\nError Summary:")
for err_type, count in sorted(error_types.items(), key=lambda x: -x[1]):
print(f" - {err_type}: {count} occurrence(s)")
print("\nFirst 5 errors:")
for i, error in enumerate(stats.errors[:5], 1):
print(f"\n {i}. Batch {error['batch']}")
print(f" Type: {error['error_type']}")
print(f" Message: {error['error_msg']}")
print(f" Records lost: {error['records_lost']:,}")
if len(stats.errors) > 5:
print(f"\n ... and {len(stats.errors) - 5} more errors")
print("\n" + "=" * 60)
print(f"{BOLD_RED}⚠️ WARNING: Cleanup completed with errors!{RESET}")
print(" Please review the error details above.")
print("=" * 60)
else:
print("\n" + "=" * 60)
print(f"{BOLD_GREEN}✓ SUCCESS: All records cleaned up successfully!{RESET}")
print("=" * 60)
async def setup_storage(self) -> tuple:
"""Setup and initialize storage
Returns:
Tuple of (storage_instance, storage_name, workspace)
Returns (None, None, None) if user chooses to exit
"""
print("\n=== Storage Setup ===")
self.print_storage_types()
# Custom input handling with exit support
while True:
choice = input(
"\nSelect storage type (1-4) (Press Enter to exit): "
).strip()
# Check for exit
if choice == "" or choice == "0":
print("\n✓ Cleanup cancelled by user")
return None, None, None
# Check if choice is valid
if choice in STORAGE_TYPES:
break
print(
f"✗ Invalid choice. Please enter one of: {', '.join(STORAGE_TYPES.keys())}"
)
storage_name = STORAGE_TYPES[choice]
# Special warning for JsonKVStorage about concurrent access
if storage_name == "JsonKVStorage":
print("\n" + "=" * 60)
print(f"{BOLD_RED}⚠️ IMPORTANT WARNING - JsonKVStorage Concurrency{RESET}")
print("=" * 60)
print("\nJsonKVStorage is an in-memory database that does NOT support")
print("concurrent access to the same file by multiple programs.")
print("\nBefore proceeding, please ensure that:")
print(" • LightRAG Server is completely shut down")
print(" • No other programs are accessing the storage files")
print("\n" + "=" * 60)
confirm = (
input("\nHas LightRAG Server been shut down? (yes/no): ")
.strip()
.lower()
)
if confirm != "yes":
print(
"\n✓ Operation cancelled - Please shut down LightRAG Server first"
)
return None, None, None
print("✓ Proceeding with JsonKVStorage cleanup...")
# Check configuration (warnings only, doesn't block)
print("\nChecking configuration...")
self.check_env_vars(storage_name)
# Get workspace
workspace = self.get_workspace_for_storage(storage_name)
# Initialize storage (real validation point)
print("\nInitializing storage...")
try:
storage = await self.initialize_storage(storage_name, workspace)
print(f"- Storage Type: {storage_name}")
print(f"- Workspace: {workspace if workspace else '(default)'}")
print("- Connection Status: ✓ Success")
except Exception as e:
print(f"✗ Initialization failed: {e}")
print(f"\nFor {storage_name}, you can configure using:")
print(" 1. Environment variables (highest priority)")
# Show specific environment variable requirements
if storage_name in STORAGE_ENV_REQUIREMENTS:
for var in STORAGE_ENV_REQUIREMENTS[storage_name]:
print(f" - {var}")
print(" 2. config.ini file (medium priority)")
if storage_name == "RedisKVStorage":
print(" [redis]")
print(" uri = redis://localhost:6379")
elif storage_name == "PGKVStorage":
print(" [postgres]")
print(" host = localhost")
print(" port = 5432")
print(" user = postgres")
print(" password = yourpassword")
print(" database = lightrag")
elif storage_name == "MongoKVStorage":
print(" [mongodb]")
print(" uri = mongodb://root:root@localhost:27017/")
print(" database = LightRAG")
return None, None, None
return storage, storage_name, workspace
async def run(self):
"""Run the cleanup tool"""
try:
# Initialize shared storage (REQUIRED for storage classes to work)
from lightrag.kg.shared_storage import initialize_share_data
initialize_share_data(workers=1)
# Print header
self.print_header()
# Setup storage
self.storage, storage_name, self.workspace = await self.setup_storage()
# Check if user cancelled
if self.storage is None:
return
# Count query caches
print("\nCounting query cache records...")
try:
counts = await self.count_query_caches(self.storage, storage_name)
except Exception as e:
print(f"✗ Counting failed: {e}")
await self.storage.finalize()
return
# Initialize stats
stats = CleanupStats()
stats.initialize_counts()
stats.counts_before = counts
# Print statistics
self.print_cache_statistics(
counts, "📊 Query Cache Statistics (Before Cleanup):"
)
# Calculate total
total_caches = sum(
counts[mode]["query"] + counts[mode]["keywords"] for mode in QUERY_MODES
)
if total_caches == 0:
print("\n⚠️ No query caches found in storage")
await self.storage.finalize()
return
# Select cleanup type
print("\n=== Cleanup Options ===")
print("[1] Delete all query caches (both query and keywords)")
print("[2] Delete query caches only (keep keywords)")
print("[3] Delete keywords caches only (keep query)")
print("[0] Cancel")
while True:
choice = input("\nSelect cleanup option (0-3): ").strip()
if choice == "0" or choice == "":
print("\n✓ Cleanup cancelled")
await self.storage.finalize()
return
elif choice == "1":
cleanup_type = "all"
elif choice == "2":
cleanup_type = "query"
elif choice == "3":
cleanup_type = "keywords"
else:
print("✗ Invalid choice. Please enter 0, 1, 2, or 3")
continue
# Calculate total to delete for the selected type
stats.total_to_delete = self.calculate_total_to_delete(
counts, cleanup_type
)
# Check if there are any records to delete
if stats.total_to_delete == 0:
if cleanup_type == "all":
print(f"\n{BOLD_RED}⚠️ No query caches found to delete!{RESET}")
elif cleanup_type == "query":
print(
f"\n{BOLD_RED}⚠️ No query caches found to delete! (Only keywords exist){RESET}"
)
elif cleanup_type == "keywords":
print(
f"\n{BOLD_RED}⚠️ No keywords caches found to delete! (Only query caches exist){RESET}"
)
print(" Please select a different cleanup option.\n")
continue
# Valid selection with records to delete
break
# Confirm deletion
print("\n" + "=" * 60)
print("Cleanup Confirmation")
print("=" * 60)
print(
f"Storage: {BOLD_CYAN}{storage_name}{RESET} "
f"(workspace: {self.format_workspace(self.workspace)})"
)
print(f"Cleanup Type: {BOLD_CYAN}{cleanup_type}{RESET}")
print(
f"Records to Delete: {BOLD_RED}{stats.total_to_delete:,}{RESET} / {total_caches:,}"
)
if cleanup_type == "all":
print(
f"\n{BOLD_RED}⚠️ WARNING: This will delete ALL query caches across all modes!{RESET}"
)
elif cleanup_type == "query":
print("\n⚠️ This will delete query caches only (keywords will be kept)")
elif cleanup_type == "keywords":
print("\n⚠️ This will delete keywords caches only (query will be kept)")
confirm = input("\nContinue with deletion? (y/n): ").strip().lower()
if confirm != "y":
print("\n✓ Cleanup cancelled")
await self.storage.finalize()
return
# Perform deletion
await self.delete_query_caches(
self.storage, storage_name, cleanup_type, stats
)
# Persist changes
print("\nPersisting changes to storage...")
try:
await self.storage.index_done_callback()
print("✓ Changes persisted successfully")
except Exception as e:
print(f"✗ Persist failed: {e}")
stats.add_error(0, e, 0)
# Count again to verify
print("\nVerifying cleanup results...")
try:
stats.counts_after = await self.count_query_caches(
self.storage, storage_name
)
except Exception as e:
print(f"⚠️ Verification failed: {e}")
# Use zero counts if verification fails
stats.counts_after = {
mode: {"query": 0, "keywords": 0} for mode in QUERY_MODES
}
# Print final report
self.print_cleanup_report(stats)
# Print after statistics
self.print_cache_statistics(
stats.counts_after, "\n📊 Query Cache Statistics (After Cleanup):"
)
# Cleanup
await self.storage.finalize()
except KeyboardInterrupt:
print("\n\n✗ Cleanup interrupted by user")
except Exception as e:
print(f"\n✗ Cleanup failed: {e}")
import traceback
traceback.print_exc()
finally:
# Ensure cleanup
if self.storage:
try:
await self.storage.finalize()
except Exception:
pass
# Finalize shared storage
try:
from lightrag.kg.shared_storage import finalize_share_data
finalize_share_data()
except Exception:
pass
async def main():
"""Main entry point"""
tool = CleanupTool()
await tool.run()
if __name__ == "__main__":
asyncio.run(main())