LightRAG/lightrag/llm
Raphael MANSUY fe9b8ec02a
tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4)
* feat: Implement multi-tenant architecture with tenant and knowledge base models

- Added data models for tenants, knowledge bases, and related configurations.
- Introduced role and permission management for users in the multi-tenant system.
- Created a service layer for managing tenants and knowledge bases, including CRUD operations.
- Developed a tenant-aware instance manager for LightRAG with caching and isolation features.
- Added a migration script to transition existing workspace-based deployments to the new multi-tenant architecture.

* chore: ignore lightrag/api/webui/assets/ directory

* chore: stop tracking lightrag/api/webui/assets (ignore in .gitignore)

* feat: Initialize LightRAG Multi-Tenant Stack with PostgreSQL

- Added README.md for project overview, setup instructions, and architecture details.
- Created docker-compose.yml to define services: PostgreSQL, Redis, LightRAG API, and Web UI.
- Introduced env.example for environment variable configuration.
- Implemented init-postgres.sql for PostgreSQL schema initialization with multi-tenant support.
- Added reproduce_issue.py for testing default tenant access via API.

* feat: Enhance TenantSelector and update related components for improved multi-tenant support

* feat: Enhance testing capabilities and update documentation

- Updated Makefile to include new test commands for various modes (compatibility, isolation, multi-tenant, security, coverage, and dry-run).
- Modified API health check endpoint in Makefile to reflect new port configuration.
- Updated QUICK_START.md and README.md to reflect changes in service URLs and ports.
- Added environment variables for testing modes in env.example.
- Introduced run_all_tests.sh script to automate testing across different modes.
- Created conftest.py for pytest configuration, including database fixtures and mock services.
- Implemented database helper functions for streamlined database operations in tests.
- Added test collection hooks to skip tests based on the current MULTITENANT_MODE.

* feat: Implement multi-tenant support with demo mode enabled by default

- Added multi-tenant configuration to the environment and Docker setup.
- Created pre-configured demo tenants (acme-corp and techstart) for testing.
- Updated API endpoints to support tenant-specific data access.
- Enhanced Makefile commands for better service management and database operations.
- Introduced user-tenant membership system with role-based access control.
- Added comprehensive documentation for multi-tenant setup and usage.
- Fixed issues with document visibility in multi-tenant environments.
- Implemented necessary database migrations for user memberships and legacy support.

* feat(audit): Add final audit report for multi-tenant implementation

- Documented overall assessment, architecture overview, test results, security findings, and recommendations.
- Included detailed findings on critical security issues and architectural concerns.

fix(security): Implement security fixes based on audit findings

- Removed global RAG fallback and enforced strict tenant context.
- Configured super-admin access and required user authentication for tenant access.
- Cleared localStorage on logout and improved error handling in WebUI.

chore(logs): Create task logs for audit and security fixes implementation

- Documented actions, decisions, and next steps for both audit and security fixes.
- Summarized test results and remaining recommendations.

chore(scripts): Enhance development stack management scripts

- Added scripts for cleaning, starting, and stopping the development stack.
- Improved output messages and ensured graceful shutdown of services.

feat(starter): Initialize PostgreSQL with AGE extension support

- Created initialization scripts for PostgreSQL extensions including uuid-ossp, vector, and AGE.
- Ensured successful installation and verification of extensions.

* feat: Implement auto-select for first tenant and KB on initial load in WebUI

- Removed WEBUI_INITIAL_STATE_FIX.md as the issue is resolved.
- Added useTenantInitialization hook to automatically select the first available tenant and KB on app load.
- Integrated the new hook into the Root component of the WebUI.
- Updated RetrievalTesting component to ensure a KB is selected before allowing user interaction.
- Created end-to-end tests for multi-tenant isolation and real service interactions.
- Added scripts for starting, stopping, and cleaning the development stack.
- Enhanced API and tenant routes to support tenant-specific pipeline status initialization.
- Updated constants for backend URL to reflect the correct port.
- Improved error handling and logging in various components.

* feat: Add multi-tenant support with enhanced E2E testing scripts and client functionality

* update client

* Add integration and unit tests for multi-tenant API, models, security, and storage

- Implement integration tests for tenant and knowledge base management endpoints in `test_tenant_api_routes.py`.
- Create unit tests for tenant isolation, model validation, and role permissions in `test_tenant_models.py`.
- Add security tests to enforce role-based permissions and context validation in `test_tenant_security.py`.
- Develop tests for tenant-aware storage operations and context isolation in `test_tenant_storage_phase3.py`.

* feat(e2e): Implement OpenAI model support and database reset functionality

* Add comprehensive test suite for gpt-5-nano compatibility

- Introduced tests for parameter normalization, embeddings, and entity extraction.
- Implemented direct API testing for gpt-5-nano.
- Validated .env configuration loading and OpenAI API connectivity.
- Analyzed reasoning token overhead with various token limits.
- Documented test procedures and expected outcomes in README files.
- Ensured all tests pass for production readiness.

* kg(postgres_impl): ensure AGE extension is loaded in session and configure graph initialization

* dev: add hybrid dev helper scripts, Makefile, docker-compose.dev-db and local development docs

* feat(dev): add dev helper scripts and local development documentation for hybrid setup

* feat(multi-tenant): add detailed specifications and logs for multi-tenant improvements, including UX, backend handling, and ingestion pipeline

* feat(migration): add generated tenant/kb columns, indexes, triggers; drop unused tables; update schema and docs

* test(backward-compat): adapt tests to new StorageNameSpace/TenantService APIs (use concrete dummy storages)

* chore: multi-tenant and UX updates — docs, webui, storage, tenant service adjustments

* tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency

- gpt5_nano_compatibility: add pytest-asyncio markers, skip when OPENAI key missing, prevent module-level asyncio.run collection, add conftest
- Ollama tests: add server availability check and skip markers; avoid pytest collection warnings by renaming helper classes
- Graph storage tests: rename interactive test functions to avoid pytest collection
- Document & Tenant routes: support external_ids for idempotency; ensure HTTPExceptions are re-raised
- LightRAG core: support external_ids in apipeline_enqueue_documents and idempotent logic
- Tests updated to match API changes (tenant routes & document routes)
- Add logs and scripts for inspection and audit
2025-12-04 16:04:21 +08:00
..
__init__.py Separated llms from the main llm.py file and fixed some deprication bugs 2025-01-25 00:11:00 +01:00
anthropic.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
azure_openai.py tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4) 2025-12-04 16:04:21 +08:00
bedrock.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
binding_options.py Fix boolean parser problem for for LLM environment variable 2025-09-28 19:23:57 +08:00
hf.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
jina.py feat: improve Jina API error handling to show clean messages instead of HTML 2025-08-05 11:46:02 +08:00
llama_index_impl.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
lmdeploy.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
lollms.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00
nvidia_openai.py refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00
ollama.py tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4) 2025-12-04 16:04:21 +08:00
openai.py tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4) 2025-12-04 16:04:21 +08:00
Readme.md Refactor LLM temperature handling to be provider-specific 2025-08-20 23:52:33 +08:00
siliconcloud.py refactor: Remove deprecated max_token_size from embedding configuration 2025-07-29 10:49:35 +08:00
zhipu.py Add Deepseek Style Chain of Thought (CoT) Support for OpenAI Compatible LLM providers 2025-09-09 22:34:36 +08:00

  1. LlamaIndex (llm/llama_index.py):
    • Provides integration with OpenAI and other providers through LlamaIndex
    • Supports both direct API access and proxy services like LiteLLM
    • Handles embeddings and completions with consistent interfaces
    • See example implementations:
Using LlamaIndex

LightRAG supports LlamaIndex for embeddings and completions in two ways: direct OpenAI usage or through LiteLLM proxy.

Setup

First, install the required dependencies:

pip install llama-index-llms-litellm llama-index-embeddings-litellm

Standard OpenAI Usage

from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from lightrag.utils import EmbeddingFunc

# Initialize with direct OpenAI access
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize OpenAI if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = OpenAI(
                model="gpt-4",
                api_key="your-openai-key",
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with OpenAI
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=OpenAIEmbedding(
                model="text-embedding-3-large",
                api_key="your-openai-key"
            )
        ),
    ),
)

Using LiteLLM Proxy

  1. Use any LLM provider through LiteLLM
  2. Leverage LlamaIndex's embedding and completion capabilities
  3. Maintain consistent configuration across services
from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.llms.litellm import LiteLLM
from llama_index.embeddings.litellm import LiteLLMEmbedding
from lightrag.utils import EmbeddingFunc

# Initialize with LiteLLM proxy
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize LiteLLM if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = LiteLLM(
                model=f"openai/{settings.LLM_MODEL}",  # Format: "provider/model_name"
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with LiteLLM
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=LiteLLMEmbedding(
                model_name=f"openai/{settings.EMBEDDING_MODEL}",
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
            )
        ),
    ),
)

Environment Variables

For OpenAI direct usage:

OPENAI_API_KEY=your-openai-key

For LiteLLM proxy:

# LiteLLM Configuration
LITELLM_URL=http://litellm:4000
LITELLM_KEY=your-litellm-key

# Model Configuration
LLM_MODEL=gpt-4
EMBEDDING_MODEL=text-embedding-3-large

Key Differences

  1. Direct OpenAI:

    • Simpler setup
    • Direct API access
    • Requires OpenAI API key
  2. LiteLLM Proxy:

    • Model provider agnostic
    • Centralized API key management
    • Support for multiple providers
    • Better cost control and monitoring