LightRAG/lightrag/kg/networkx_impl.py
Raphael MANSUY fe9b8ec02a
tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4)
* feat: Implement multi-tenant architecture with tenant and knowledge base models

- Added data models for tenants, knowledge bases, and related configurations.
- Introduced role and permission management for users in the multi-tenant system.
- Created a service layer for managing tenants and knowledge bases, including CRUD operations.
- Developed a tenant-aware instance manager for LightRAG with caching and isolation features.
- Added a migration script to transition existing workspace-based deployments to the new multi-tenant architecture.

* chore: ignore lightrag/api/webui/assets/ directory

* chore: stop tracking lightrag/api/webui/assets (ignore in .gitignore)

* feat: Initialize LightRAG Multi-Tenant Stack with PostgreSQL

- Added README.md for project overview, setup instructions, and architecture details.
- Created docker-compose.yml to define services: PostgreSQL, Redis, LightRAG API, and Web UI.
- Introduced env.example for environment variable configuration.
- Implemented init-postgres.sql for PostgreSQL schema initialization with multi-tenant support.
- Added reproduce_issue.py for testing default tenant access via API.

* feat: Enhance TenantSelector and update related components for improved multi-tenant support

* feat: Enhance testing capabilities and update documentation

- Updated Makefile to include new test commands for various modes (compatibility, isolation, multi-tenant, security, coverage, and dry-run).
- Modified API health check endpoint in Makefile to reflect new port configuration.
- Updated QUICK_START.md and README.md to reflect changes in service URLs and ports.
- Added environment variables for testing modes in env.example.
- Introduced run_all_tests.sh script to automate testing across different modes.
- Created conftest.py for pytest configuration, including database fixtures and mock services.
- Implemented database helper functions for streamlined database operations in tests.
- Added test collection hooks to skip tests based on the current MULTITENANT_MODE.

* feat: Implement multi-tenant support with demo mode enabled by default

- Added multi-tenant configuration to the environment and Docker setup.
- Created pre-configured demo tenants (acme-corp and techstart) for testing.
- Updated API endpoints to support tenant-specific data access.
- Enhanced Makefile commands for better service management and database operations.
- Introduced user-tenant membership system with role-based access control.
- Added comprehensive documentation for multi-tenant setup and usage.
- Fixed issues with document visibility in multi-tenant environments.
- Implemented necessary database migrations for user memberships and legacy support.

* feat(audit): Add final audit report for multi-tenant implementation

- Documented overall assessment, architecture overview, test results, security findings, and recommendations.
- Included detailed findings on critical security issues and architectural concerns.

fix(security): Implement security fixes based on audit findings

- Removed global RAG fallback and enforced strict tenant context.
- Configured super-admin access and required user authentication for tenant access.
- Cleared localStorage on logout and improved error handling in WebUI.

chore(logs): Create task logs for audit and security fixes implementation

- Documented actions, decisions, and next steps for both audit and security fixes.
- Summarized test results and remaining recommendations.

chore(scripts): Enhance development stack management scripts

- Added scripts for cleaning, starting, and stopping the development stack.
- Improved output messages and ensured graceful shutdown of services.

feat(starter): Initialize PostgreSQL with AGE extension support

- Created initialization scripts for PostgreSQL extensions including uuid-ossp, vector, and AGE.
- Ensured successful installation and verification of extensions.

* feat: Implement auto-select for first tenant and KB on initial load in WebUI

- Removed WEBUI_INITIAL_STATE_FIX.md as the issue is resolved.
- Added useTenantInitialization hook to automatically select the first available tenant and KB on app load.
- Integrated the new hook into the Root component of the WebUI.
- Updated RetrievalTesting component to ensure a KB is selected before allowing user interaction.
- Created end-to-end tests for multi-tenant isolation and real service interactions.
- Added scripts for starting, stopping, and cleaning the development stack.
- Enhanced API and tenant routes to support tenant-specific pipeline status initialization.
- Updated constants for backend URL to reflect the correct port.
- Improved error handling and logging in various components.

* feat: Add multi-tenant support with enhanced E2E testing scripts and client functionality

* update client

* Add integration and unit tests for multi-tenant API, models, security, and storage

- Implement integration tests for tenant and knowledge base management endpoints in `test_tenant_api_routes.py`.
- Create unit tests for tenant isolation, model validation, and role permissions in `test_tenant_models.py`.
- Add security tests to enforce role-based permissions and context validation in `test_tenant_security.py`.
- Develop tests for tenant-aware storage operations and context isolation in `test_tenant_storage_phase3.py`.

* feat(e2e): Implement OpenAI model support and database reset functionality

* Add comprehensive test suite for gpt-5-nano compatibility

- Introduced tests for parameter normalization, embeddings, and entity extraction.
- Implemented direct API testing for gpt-5-nano.
- Validated .env configuration loading and OpenAI API connectivity.
- Analyzed reasoning token overhead with various token limits.
- Documented test procedures and expected outcomes in README files.
- Ensured all tests pass for production readiness.

* kg(postgres_impl): ensure AGE extension is loaded in session and configure graph initialization

* dev: add hybrid dev helper scripts, Makefile, docker-compose.dev-db and local development docs

* feat(dev): add dev helper scripts and local development documentation for hybrid setup

* feat(multi-tenant): add detailed specifications and logs for multi-tenant improvements, including UX, backend handling, and ingestion pipeline

* feat(migration): add generated tenant/kb columns, indexes, triggers; drop unused tables; update schema and docs

* test(backward-compat): adapt tests to new StorageNameSpace/TenantService APIs (use concrete dummy storages)

* chore: multi-tenant and UX updates — docs, webui, storage, tenant service adjustments

* tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency

- gpt5_nano_compatibility: add pytest-asyncio markers, skip when OPENAI key missing, prevent module-level asyncio.run collection, add conftest
- Ollama tests: add server availability check and skip markers; avoid pytest collection warnings by renaming helper classes
- Graph storage tests: rename interactive test functions to avoid pytest collection
- Document & Tenant routes: support external_ids for idempotency; ensure HTTPExceptions are re-raised
- LightRAG core: support external_ids in apipeline_enqueue_documents and idempotent logic
- Tests updated to match API changes (tenant routes & document routes)
- Add logs and scripts for inspection and audit
2025-12-04 16:04:21 +08:00

601 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
from dataclasses import dataclass
from typing import final
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import logger
from lightrag.base import BaseGraphStorage
from lightrag.constants import GRAPH_FIELD_SEP
import networkx as nx
from .shared_storage import (
get_storage_lock,
get_update_flag,
set_all_update_flags,
)
from dotenv import load_dotenv
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
@final
@dataclass
class NetworkXStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name, workspace="_"):
logger.info(
f"[{workspace}] Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
def __post_init__(self):
working_dir = self.global_config["working_dir"]
# Get composite workspace (supports multi-tenant isolation)
composite_workspace = self._get_composite_workspace()
if composite_workspace and composite_workspace != "_":
# Include composite workspace in the file path for data isolation
# For multi-tenant: tenant_id:kb_id:workspace
# For single-tenant: just workspace
workspace_dir = os.path.join(working_dir, composite_workspace)
self.final_namespace = f"{composite_workspace}_{self.namespace}"
else:
# Default behavior when workspace is empty
self.final_namespace = self.namespace
workspace_dir = working_dir
self.workspace = "_"
os.makedirs(workspace_dir, exist_ok=True)
self._graphml_xml_file = os.path.join(
workspace_dir, f"graph_{self.namespace}.graphml"
)
self._storage_lock = None
self.storage_updated = None
self._graph = None
# Load initial graph
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"[{self.workspace}] Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
else:
logger.info(
f"[{self.workspace}] Created new empty graph fiel: {self._graphml_xml_file}"
)
self._graph = preloaded_graph or nx.Graph()
async def initialize(self):
"""Initialize storage data"""
# Get the update flag for cross-process update notification
self.storage_updated = await get_update_flag(self.final_namespace)
# Get the storage lock for use in other methods
self._storage_lock = get_storage_lock()
async def _get_graph(self):
"""Check if the storage should be reloaded"""
# Acquire lock to prevent concurrent read and write
async with self._storage_lock:
# Check if data needs to be reloaded
if self.storage_updated.value:
logger.info(
f"[{self.workspace}] Process {os.getpid()} reloading graph {self._graphml_xml_file} due to modifications by another process"
)
# Reload data
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
self.storage_updated.value = False
return self._graph
async def has_node(self, node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
graph = await self._get_graph()
return graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
graph = await self._get_graph()
src_degree = graph.degree(src_id) if graph.has_node(src_id) else 0
tgt_degree = graph.degree(tgt_id) if graph.has_node(tgt_id) else 0
return src_degree + tgt_degree
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
graph = await self._get_graph()
if graph.has_node(source_node_id):
return list(graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
if graph.has_node(node_id):
graph.remove_node(node_id)
logger.debug(f"[{self.workspace}] Node {node_id} deleted from the graph")
else:
logger.warning(
f"[{self.workspace}] Node {node_id} not found in the graph for deletion"
)
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
nodes: List of node IDs to be deleted
"""
graph = await self._get_graph()
for node in nodes:
if graph.has_node(node):
graph.remove_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
graph = await self._get_graph()
for source, target in edges:
if graph.has_edge(source, target):
graph.remove_edge(source, target)
async def get_all_labels(self) -> list[str]:
"""
Get all node labels in the graph
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
graph = await self._get_graph()
labels = set()
for node in graph.nodes():
labels.add(str(node)) # Add node id as a label
# Return sorted list
return sorted(list(labels))
async def get_popular_labels(self, limit: int = 300) -> list[str]:
"""
Get popular labels by node degree (most connected entities)
Args:
limit: Maximum number of labels to return
Returns:
List of labels sorted by degree (highest first)
"""
graph = await self._get_graph()
# Get degrees of all nodes and sort by degree descending
degrees = dict(graph.degree())
sorted_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)
# Return top labels limited by the specified limit
popular_labels = [str(node) for node, _ in sorted_nodes[:limit]]
logger.debug(
f"[{self.workspace}] Retrieved {len(popular_labels)} popular labels (limit: {limit})"
)
return popular_labels
async def search_labels(self, query: str, limit: int = 50) -> list[str]:
"""
Search labels with fuzzy matching
Args:
query: Search query string
limit: Maximum number of results to return
Returns:
List of matching labels sorted by relevance
"""
graph = await self._get_graph()
query_lower = query.lower().strip()
if not query_lower:
return []
# Collect matching nodes with relevance scores
matches = []
for node in graph.nodes():
node_str = str(node)
node_lower = node_str.lower()
# Skip if no match
if query_lower not in node_lower:
continue
# Calculate relevance score
# Exact match gets highest score
if node_lower == query_lower:
score = 1000
# Prefix match gets high score
elif node_lower.startswith(query_lower):
score = 500
# Contains match gets base score, with bonus for shorter strings
else:
# Shorter strings with matches are more relevant
score = 100 - len(node_str)
# Bonus for word boundary matches
if f" {query_lower}" in node_lower or f"_{query_lower}" in node_lower:
score += 50
matches.append((node_str, score))
# Sort by relevance score (desc) then alphabetically
matches.sort(key=lambda x: (-x[1], x[0]))
# Return top matches limited by the specified limit
search_results = [match[0] for match in matches[:limit]]
logger.debug(
f"[{self.workspace}] Search query '{query}' returned {len(search_results)} results (limit: {limit})"
)
return search_results
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = None,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node* means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
# Get max_nodes from global_config if not provided
if max_nodes is None:
max_nodes = self.global_config.get("max_graph_nodes", 1000)
else:
# Limit max_nodes to not exceed global_config max_graph_nodes
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
graph = await self._get_graph()
result = KnowledgeGraph()
# Handle special case for "*" label
if node_label == "*":
# Get degrees of all nodes
degrees = dict(graph.degree())
# Sort nodes by degree in descending order and take top max_nodes
sorted_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)
# Check if graph is truncated
if len(sorted_nodes) > max_nodes:
result.is_truncated = True
logger.info(
f"[{self.workspace}] Graph truncated: {len(sorted_nodes)} nodes found, limited to {max_nodes}"
)
limited_nodes = [node for node, _ in sorted_nodes[:max_nodes]]
# Create subgraph with the highest degree nodes
subgraph = graph.subgraph(limited_nodes)
else:
# Check if node exists
if node_label not in graph:
logger.warning(
f"[{self.workspace}] Node {node_label} not found in the graph"
)
return KnowledgeGraph() # Return empty graph
# Use modified BFS to get nodes, prioritizing high-degree nodes at the same depth
bfs_nodes = []
visited = set()
# Store (node, depth, degree) in the queue
queue = [(node_label, 0, graph.degree(node_label))]
# Flag to track if there are unexplored neighbors due to depth limit
has_unexplored_neighbors = False
# Modified breadth-first search with degree-based prioritization
while queue and len(bfs_nodes) < max_nodes:
# Get the current depth from the first node in queue
current_depth = queue[0][1]
# Collect all nodes at the current depth
current_level_nodes = []
while queue and queue[0][1] == current_depth:
current_level_nodes.append(queue.pop(0))
# Sort nodes at current depth by degree (highest first)
current_level_nodes.sort(key=lambda x: x[2], reverse=True)
# Process all nodes at current depth in order of degree
for current_node, depth, degree in current_level_nodes:
if current_node not in visited:
visited.add(current_node)
bfs_nodes.append(current_node)
# Only explore neighbors if we haven't reached max_depth
if depth < max_depth:
# Add neighbor nodes to queue with incremented depth
neighbors = list(graph.neighbors(current_node))
# Filter out already visited neighbors
unvisited_neighbors = [
n for n in neighbors if n not in visited
]
# Add neighbors to the queue with their degrees
for neighbor in unvisited_neighbors:
neighbor_degree = graph.degree(neighbor)
queue.append((neighbor, depth + 1, neighbor_degree))
else:
# Check if there are unexplored neighbors (skipped due to depth limit)
neighbors = list(graph.neighbors(current_node))
unvisited_neighbors = [
n for n in neighbors if n not in visited
]
if unvisited_neighbors:
has_unexplored_neighbors = True
# Check if we've reached max_nodes
if len(bfs_nodes) >= max_nodes:
break
# Check if graph is truncated - either due to max_nodes limit or depth limit
if (queue and len(bfs_nodes) >= max_nodes) or has_unexplored_neighbors:
if len(bfs_nodes) >= max_nodes:
result.is_truncated = True
logger.info(
f"[{self.workspace}] Graph truncated: max_nodes limit {max_nodes} reached"
)
else:
logger.info(
f"[{self.workspace}] Graph truncated: found {len(bfs_nodes)} nodes within max_depth {max_depth}"
)
# Create subgraph with BFS discovered nodes
subgraph = graph.subgraph(bfs_nodes)
# Add nodes to result
seen_nodes = set()
seen_edges = set()
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node), labels=[str(node)], properties=node_properties
)
)
seen_nodes.add(str(node))
# Add edges to result
for edge in subgraph.edges():
source, target = edge
# Esure unique edge_id for undirect graph
if str(source) > str(target):
source, target = target, source
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
edge_data = dict(subgraph.edges[edge])
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
)
seen_edges.add(edge_id)
logger.info(
f"[{self.workspace}] Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
chunk_ids_set = set(chunk_ids)
graph = await self._get_graph()
matching_nodes = []
for node_id, node_data in graph.nodes(data=True):
if "source_id" in node_data:
node_source_ids = set(node_data["source_id"].split(GRAPH_FIELD_SEP))
if not node_source_ids.isdisjoint(chunk_ids_set):
node_data_with_id = node_data.copy()
node_data_with_id["id"] = node_id
matching_nodes.append(node_data_with_id)
return matching_nodes
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
chunk_ids_set = set(chunk_ids)
graph = await self._get_graph()
matching_edges = []
for u, v, edge_data in graph.edges(data=True):
if "source_id" in edge_data:
edge_source_ids = set(edge_data["source_id"].split(GRAPH_FIELD_SEP))
if not edge_source_ids.isdisjoint(chunk_ids_set):
edge_data_with_nodes = edge_data.copy()
edge_data_with_nodes["source"] = u
edge_data_with_nodes["target"] = v
matching_edges.append(edge_data_with_nodes)
return matching_edges
async def get_all_nodes(self) -> list[dict]:
"""Get all nodes in the graph.
Returns:
A list of all nodes, where each node is a dictionary of its properties
"""
graph = await self._get_graph()
all_nodes = []
for node_id, node_data in graph.nodes(data=True):
node_data_with_id = node_data.copy()
node_data_with_id["id"] = node_id
all_nodes.append(node_data_with_id)
return all_nodes
async def get_all_edges(self) -> list[dict]:
"""Get all edges in the graph.
Returns:
A list of all edges, where each edge is a dictionary of its properties
"""
graph = await self._get_graph()
all_edges = []
for u, v, edge_data in graph.edges(data=True):
edge_data_with_nodes = edge_data.copy()
edge_data_with_nodes["source"] = u
edge_data_with_nodes["target"] = v
all_edges.append(edge_data_with_nodes)
return all_edges
async def index_done_callback(self) -> bool:
"""Save data to disk"""
async with self._storage_lock:
# Check if storage was updated by another process
if self.storage_updated.value:
# Storage was updated by another process, reload data instead of saving
logger.info(
f"[{self.workspace}] Graph was updated by another process, reloading..."
)
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
self.storage_updated.value = False
return False # Return error
# Acquire lock and perform persistence
async with self._storage_lock:
try:
# Save data to disk
NetworkXStorage.write_nx_graph(
self._graph, self._graphml_xml_file, self.workspace
)
# Notify other processes that data has been updated
await set_all_update_flags(self.final_namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
return True # Return success
except Exception as e:
logger.error(f"[{self.workspace}] Error saving graph: {e}")
return False # Return error
return True
async def drop(self) -> dict[str, str]:
"""Drop all graph data from storage and clean up resources
This method will:
1. Remove the graph storage file if it exists
2. Reset the graph to an empty state
3. Update flags to notify other processes
4. Changes is persisted to disk immediately
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._graphml_xml_file):
os.remove(self._graphml_xml_file)
self._graph = nx.Graph()
# Notify other processes that data has been updated
await set_all_update_flags(self.final_namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(
f"[{self.workspace}] Process {os.getpid()} drop graph file:{self._graphml_xml_file}"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(
f"[{self.workspace}] Error dropping graph file:{self._graphml_xml_file}: {e}"
)
return {"status": "error", "message": str(e)}