LightRAG/lightrag/kg/nano_vector_db_impl.py
Raphael MANSUY fe9b8ec02a
tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency (#4)
* feat: Implement multi-tenant architecture with tenant and knowledge base models

- Added data models for tenants, knowledge bases, and related configurations.
- Introduced role and permission management for users in the multi-tenant system.
- Created a service layer for managing tenants and knowledge bases, including CRUD operations.
- Developed a tenant-aware instance manager for LightRAG with caching and isolation features.
- Added a migration script to transition existing workspace-based deployments to the new multi-tenant architecture.

* chore: ignore lightrag/api/webui/assets/ directory

* chore: stop tracking lightrag/api/webui/assets (ignore in .gitignore)

* feat: Initialize LightRAG Multi-Tenant Stack with PostgreSQL

- Added README.md for project overview, setup instructions, and architecture details.
- Created docker-compose.yml to define services: PostgreSQL, Redis, LightRAG API, and Web UI.
- Introduced env.example for environment variable configuration.
- Implemented init-postgres.sql for PostgreSQL schema initialization with multi-tenant support.
- Added reproduce_issue.py for testing default tenant access via API.

* feat: Enhance TenantSelector and update related components for improved multi-tenant support

* feat: Enhance testing capabilities and update documentation

- Updated Makefile to include new test commands for various modes (compatibility, isolation, multi-tenant, security, coverage, and dry-run).
- Modified API health check endpoint in Makefile to reflect new port configuration.
- Updated QUICK_START.md and README.md to reflect changes in service URLs and ports.
- Added environment variables for testing modes in env.example.
- Introduced run_all_tests.sh script to automate testing across different modes.
- Created conftest.py for pytest configuration, including database fixtures and mock services.
- Implemented database helper functions for streamlined database operations in tests.
- Added test collection hooks to skip tests based on the current MULTITENANT_MODE.

* feat: Implement multi-tenant support with demo mode enabled by default

- Added multi-tenant configuration to the environment and Docker setup.
- Created pre-configured demo tenants (acme-corp and techstart) for testing.
- Updated API endpoints to support tenant-specific data access.
- Enhanced Makefile commands for better service management and database operations.
- Introduced user-tenant membership system with role-based access control.
- Added comprehensive documentation for multi-tenant setup and usage.
- Fixed issues with document visibility in multi-tenant environments.
- Implemented necessary database migrations for user memberships and legacy support.

* feat(audit): Add final audit report for multi-tenant implementation

- Documented overall assessment, architecture overview, test results, security findings, and recommendations.
- Included detailed findings on critical security issues and architectural concerns.

fix(security): Implement security fixes based on audit findings

- Removed global RAG fallback and enforced strict tenant context.
- Configured super-admin access and required user authentication for tenant access.
- Cleared localStorage on logout and improved error handling in WebUI.

chore(logs): Create task logs for audit and security fixes implementation

- Documented actions, decisions, and next steps for both audit and security fixes.
- Summarized test results and remaining recommendations.

chore(scripts): Enhance development stack management scripts

- Added scripts for cleaning, starting, and stopping the development stack.
- Improved output messages and ensured graceful shutdown of services.

feat(starter): Initialize PostgreSQL with AGE extension support

- Created initialization scripts for PostgreSQL extensions including uuid-ossp, vector, and AGE.
- Ensured successful installation and verification of extensions.

* feat: Implement auto-select for first tenant and KB on initial load in WebUI

- Removed WEBUI_INITIAL_STATE_FIX.md as the issue is resolved.
- Added useTenantInitialization hook to automatically select the first available tenant and KB on app load.
- Integrated the new hook into the Root component of the WebUI.
- Updated RetrievalTesting component to ensure a KB is selected before allowing user interaction.
- Created end-to-end tests for multi-tenant isolation and real service interactions.
- Added scripts for starting, stopping, and cleaning the development stack.
- Enhanced API and tenant routes to support tenant-specific pipeline status initialization.
- Updated constants for backend URL to reflect the correct port.
- Improved error handling and logging in various components.

* feat: Add multi-tenant support with enhanced E2E testing scripts and client functionality

* update client

* Add integration and unit tests for multi-tenant API, models, security, and storage

- Implement integration tests for tenant and knowledge base management endpoints in `test_tenant_api_routes.py`.
- Create unit tests for tenant isolation, model validation, and role permissions in `test_tenant_models.py`.
- Add security tests to enforce role-based permissions and context validation in `test_tenant_security.py`.
- Develop tests for tenant-aware storage operations and context isolation in `test_tenant_storage_phase3.py`.

* feat(e2e): Implement OpenAI model support and database reset functionality

* Add comprehensive test suite for gpt-5-nano compatibility

- Introduced tests for parameter normalization, embeddings, and entity extraction.
- Implemented direct API testing for gpt-5-nano.
- Validated .env configuration loading and OpenAI API connectivity.
- Analyzed reasoning token overhead with various token limits.
- Documented test procedures and expected outcomes in README files.
- Ensured all tests pass for production readiness.

* kg(postgres_impl): ensure AGE extension is loaded in session and configure graph initialization

* dev: add hybrid dev helper scripts, Makefile, docker-compose.dev-db and local development docs

* feat(dev): add dev helper scripts and local development documentation for hybrid setup

* feat(multi-tenant): add detailed specifications and logs for multi-tenant improvements, including UX, backend handling, and ingestion pipeline

* feat(migration): add generated tenant/kb columns, indexes, triggers; drop unused tables; update schema and docs

* test(backward-compat): adapt tests to new StorageNameSpace/TenantService APIs (use concrete dummy storages)

* chore: multi-tenant and UX updates — docs, webui, storage, tenant service adjustments

* tests: stabilize integration tests + skip external services; fix multi-tenant API behavior and idempotency

- gpt5_nano_compatibility: add pytest-asyncio markers, skip when OPENAI key missing, prevent module-level asyncio.run collection, add conftest
- Ollama tests: add server availability check and skip markers; avoid pytest collection warnings by renaming helper classes
- Graph storage tests: rename interactive test functions to avoid pytest collection
- Document & Tenant routes: support external_ids for idempotency; ensure HTTPExceptions are re-raised
- LightRAG core: support external_ids in apipeline_enqueue_documents and idempotent logic
- Tests updated to match API changes (tenant routes & document routes)
- Add logs and scripts for inspection and audit
2025-12-04 16:04:21 +08:00

410 lines
15 KiB
Python

import asyncio
import base64
import os
import zlib
from typing import Any, final
from dataclasses import dataclass
import numpy as np
import time
from lightrag.utils import (
logger,
compute_mdhash_id,
)
from lightrag.base import BaseVectorStorage
from nano_vectordb import NanoVectorDB
from .shared_storage import (
get_storage_lock,
get_update_flag,
set_all_update_flags,
)
@final
@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
def __post_init__(self):
# Initialize basic attributes
self._client = None
self._storage_lock = None
self.storage_updated = None
# Use global config value if specified, otherwise use default
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
working_dir = self.global_config["working_dir"]
# Get composite workspace (supports multi-tenant isolation)
composite_workspace = self._get_composite_workspace()
if composite_workspace and composite_workspace != "_":
# Include composite workspace in the file path for data isolation
# For multi-tenant: tenant_id:kb_id:workspace
# For single-tenant: just workspace
workspace_dir = os.path.join(working_dir, composite_workspace)
self.final_namespace = f"{composite_workspace}_{self.namespace}"
else:
# Default behavior when workspace is empty
self.final_namespace = self.namespace
self.workspace = "_"
workspace_dir = working_dir
os.makedirs(workspace_dir, exist_ok=True)
self._client_file_name = os.path.join(
workspace_dir, f"vdb_{self.namespace}.json"
)
self._max_batch_size = self.global_config["embedding_batch_num"]
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
async def initialize(self):
"""Initialize storage data"""
# Get the update flag for cross-process update notification
self.storage_updated = await get_update_flag(self.final_namespace)
# Get the storage lock for use in other methods
self._storage_lock = get_storage_lock(enable_logging=False)
async def _get_client(self):
"""Check if the storage should be reloaded"""
# Acquire lock to prevent concurrent read and write
async with self._storage_lock:
# Check if data needs to be reloaded
if self.storage_updated.value:
logger.info(
f"[{self.workspace}] Process {os.getpid()} reloading {self.namespace} due to update by another process"
)
# Reload data
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Reset update flag
self.storage_updated.value = False
return self._client
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
# logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}")
if not data:
return
current_time = int(time.time())
list_data = [
{
"__id__": k,
"__created_at__": current_time,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
# Execute embedding outside of lock to avoid long lock times
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
if len(embeddings) == len(list_data):
for i, d in enumerate(list_data):
# Compress vector using Float16 + zlib + Base64 for storage optimization
vector_f16 = embeddings[i].astype(np.float16)
compressed_vector = zlib.compress(vector_f16.tobytes())
encoded_vector = base64.b64encode(compressed_vector).decode("utf-8")
d["vector"] = encoded_vector
d["__vector__"] = embeddings[i]
client = await self._get_client()
results = client.upsert(datas=list_data)
return results
else:
# sometimes the embedding is not returned correctly. just log it.
logger.error(
f"[{self.workspace}] embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
)
async def query(
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
# Use provided embedding or compute it
if query_embedding is not None:
embedding = query_embedding
else:
# Execute embedding outside of lock to avoid improve cocurrent
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding[0]
client = await self._get_client()
results = client.query(
query=embedding,
top_k=top_k,
better_than_threshold=self.cosine_better_than_threshold,
)
results = [
{
**{k: v for k, v in dp.items() if k != "vector"},
"id": dp["__id__"],
"distance": dp["__metrics__"],
"created_at": dp.get("__created_at__"),
}
for dp in results
]
return results
@property
async def client_storage(self):
client = await self._get_client()
return getattr(client, "_NanoVectorDB__storage")
async def delete(self, ids: list[str]):
"""Delete vectors with specified IDs
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
ids: List of vector IDs to be deleted
"""
try:
client = await self._get_client()
client.delete(ids)
logger.debug(
f"[{self.workspace}] Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error while deleting vectors from {self.namespace}: {e}"
)
async def delete_entity(self, entity_name: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(
f"[{self.workspace}] Attempting to delete entity {entity_name} with ID {entity_id}"
)
# Check if the entity exists
client = await self._get_client()
if client.get([entity_id]):
client.delete([entity_id])
logger.debug(
f"[{self.workspace}] Successfully deleted entity {entity_name}"
)
else:
logger.debug(
f"[{self.workspace}] Entity {entity_name} not found in storage"
)
except Exception as e:
logger.error(f"[{self.workspace}] Error deleting entity {entity_name}: {e}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
try:
client = await self._get_client()
storage = getattr(client, "_NanoVectorDB__storage")
relations = [
dp
for dp in storage["data"]
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
]
logger.debug(
f"[{self.workspace}] Found {len(relations)} relations for entity {entity_name}"
)
ids_to_delete = [relation["__id__"] for relation in relations]
if ids_to_delete:
client = await self._get_client()
client.delete(ids_to_delete)
logger.debug(
f"[{self.workspace}] Deleted {len(ids_to_delete)} relations for {entity_name}"
)
else:
logger.debug(
f"[{self.workspace}] No relations found for entity {entity_name}"
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error deleting relations for {entity_name}: {e}"
)
async def index_done_callback(self) -> bool:
"""Save data to disk"""
async with self._storage_lock:
# Check if storage was updated by another process
if self.storage_updated.value:
# Storage was updated by another process, reload data instead of saving
logger.warning(
f"[{self.workspace}] Storage for {self.namespace} was updated by another process, reloading..."
)
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Reset update flag
self.storage_updated.value = False
return False # Return error
# Acquire lock and perform persistence
async with self._storage_lock:
try:
# Save data to disk
self._client.save()
# Notify other processes that data has been updated
await set_all_update_flags(self.final_namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
return True # Return success
except Exception as e:
logger.error(
f"[{self.workspace}] Error saving data for {self.namespace}: {e}"
)
return False # Return error
return True # Return success
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
client = await self._get_client()
result = client.get([id])
if result:
dp = result[0]
return {
**{k: v for k, v in dp.items() if k != "vector"},
"id": dp.get("__id__"),
"created_at": dp.get("__created_at__"),
}
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
client = await self._get_client()
results = client.get(ids)
return [
{
**{k: v for k, v in dp.items() if k != "vector"},
"id": dp.get("__id__"),
"created_at": dp.get("__created_at__"),
}
for dp in results
]
async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]:
"""Get vectors by their IDs, returning only ID and vector data for efficiency
Args:
ids: List of unique identifiers
Returns:
Dictionary mapping IDs to their vector embeddings
Format: {id: [vector_values], ...}
"""
if not ids:
return {}
client = await self._get_client()
results = client.get(ids)
vectors_dict = {}
for result in results:
if result and "vector" in result and "__id__" in result:
# Decompress vector data (Base64 + zlib + Float16 compressed)
decoded = base64.b64decode(result["vector"])
decompressed = zlib.decompress(decoded)
vector_f16 = np.frombuffer(decompressed, dtype=np.float16)
vector_f32 = vector_f16.astype(np.float32).tolist()
vectors_dict[result["__id__"]] = vector_f32
return vectors_dict
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will:
1. Remove the vector database storage file if it exists
2. Reinitialize the vector database client
3. Update flags to notify other processes
4. Changes is persisted to disk immediately
This method is intended for use in scenarios where all data needs to be removed,
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._client_file_name):
os.remove(self._client_file_name)
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Notify other processes that data has been updated
await set_all_update_flags(self.final_namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(
f"[{self.workspace}] Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"[{self.workspace}] Error dropping {self.namespace}: {e}")
return {"status": "error", "message": str(e)}