LightRAG/lightrag/llm
2025-05-14 01:13:03 +08:00
..
__init__.py Separated llms from the main llm.py file and fixed some deprication bugs 2025-01-25 00:11:00 +01:00
anthropic.py Update webui assets 2025-03-22 00:36:38 +08:00
azure_openai.py Resolve the issue with making API calls to Azure OpenAI service 2025-03-11 11:57:41 +08:00
bedrock.py made bedrock complete generic 2025-05-02 18:25:48 +02:00
hf.py fix hf_embed torch device use MPS or CPU when CUDA is not available -macos users 2025-03-20 09:40:56 +01:00
jina.py clean comments and unused libs 2025-02-18 21:12:06 +01:00
llama_index_impl.py Moved back to llm dir as per 2025-02-20 10:23:01 +01:00
lmdeploy.py clean comments and unused libs 2025-02-18 21:12:06 +01:00
lollms.py clean comments and unused libs 2025-02-18 21:12:06 +01:00
nvidia_openai.py clean comments and unused libs 2025-02-18 21:12:06 +01:00
ollama.py Optimize Ollama LLM driver 2025-05-14 01:13:03 +08:00
openai.py Ensure OpenAI connection is closed after streaming response finished 2025-05-12 17:37:28 +08:00
Readme.md Update LlamaIndex README: improve documentation and example paths 2025-02-20 10:33:15 +01:00
siliconcloud.py clean comments and unused libs 2025-02-18 21:12:06 +01:00
zhipu.py clean comments and unused libs 2025-02-18 21:12:06 +01:00

  1. LlamaIndex (llm/llama_index.py):
    • Provides integration with OpenAI and other providers through LlamaIndex
    • Supports both direct API access and proxy services like LiteLLM
    • Handles embeddings and completions with consistent interfaces
    • See example implementations:
Using LlamaIndex

LightRAG supports LlamaIndex for embeddings and completions in two ways: direct OpenAI usage or through LiteLLM proxy.

Setup

First, install the required dependencies:

pip install llama-index-llms-litellm llama-index-embeddings-litellm

Standard OpenAI Usage

from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from lightrag.utils import EmbeddingFunc

# Initialize with direct OpenAI access
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize OpenAI if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = OpenAI(
                model="gpt-4",
                api_key="your-openai-key",
                temperature=0.7,
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with OpenAI
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        max_token_size=8192,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=OpenAIEmbedding(
                model="text-embedding-3-large",
                api_key="your-openai-key"
            )
        ),
    ),
)

Using LiteLLM Proxy

  1. Use any LLM provider through LiteLLM
  2. Leverage LlamaIndex's embedding and completion capabilities
  3. Maintain consistent configuration across services
from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.llms.litellm import LiteLLM
from llama_index.embeddings.litellm import LiteLLMEmbedding
from lightrag.utils import EmbeddingFunc

# Initialize with LiteLLM proxy
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
    try:
        # Initialize LiteLLM if not in kwargs
        if 'llm_instance' not in kwargs:
            llm_instance = LiteLLM(
                model=f"openai/{settings.LLM_MODEL}",  # Format: "provider/model_name"
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
                temperature=0.7,
            )
            kwargs['llm_instance'] = llm_instance

        response = await llama_index_complete_if_cache(
            kwargs['llm_instance'],
            prompt,
            system_prompt=system_prompt,
            history_messages=history_messages,
            **kwargs,
        )
        return response
    except Exception as e:
        logger.error(f"LLM request failed: {str(e)}")
        raise

# Initialize LightRAG with LiteLLM
rag = LightRAG(
    working_dir="your/path",
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=1536,
        max_token_size=8192,
        func=lambda texts: llama_index_embed(
            texts,
            embed_model=LiteLLMEmbedding(
                model_name=f"openai/{settings.EMBEDDING_MODEL}",
                api_base=settings.LITELLM_URL,
                api_key=settings.LITELLM_KEY,
            )
        ),
    ),
)

Environment Variables

For OpenAI direct usage:

OPENAI_API_KEY=your-openai-key

For LiteLLM proxy:

# LiteLLM Configuration
LITELLM_URL=http://litellm:4000
LITELLM_KEY=your-litellm-key

# Model Configuration
LLM_MODEL=gpt-4
EMBEDDING_MODEL=text-embedding-3-large
EMBEDDING_MAX_TOKEN_SIZE=8192

Key Differences

  1. Direct OpenAI:

    • Simpler setup
    • Direct API access
    • Requires OpenAI API key
  2. LiteLLM Proxy:

    • Model provider agnostic
    • Centralized API key management
    • Support for multiple providers
    • Better cost control and monitoring