- Snapshot JSON data before yielding batches - Release lock during batch processing - Exclude source type from target selection - Add detailed docstring for lock behavior - Filter available storage types properly
1294 lines
45 KiB
Python
1294 lines
45 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
LLM Cache Migration Tool for LightRAG
|
|
|
|
This tool migrates LLM response cache (default:extract:* and default:summary:*)
|
|
between different KV storage implementations while preserving workspace isolation.
|
|
|
|
Usage:
|
|
python -m lightrag.tools.migrate_llm_cache
|
|
# or
|
|
python lightrag/tools/migrate_llm_cache.py
|
|
|
|
Supported KV Storage Types:
|
|
- JsonKVStorage
|
|
- RedisKVStorage
|
|
- PGKVStorage
|
|
- MongoKVStorage
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
import time
|
|
from typing import Any, Dict, List
|
|
from dataclasses import dataclass, field
|
|
from dotenv import load_dotenv
|
|
|
|
# Add project root to path for imports
|
|
sys.path.insert(
|
|
0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
)
|
|
|
|
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
|
|
from lightrag.namespace import NameSpace
|
|
from lightrag.utils import setup_logger
|
|
|
|
# Load environment variables
|
|
# use the .env that is inside the current folder
|
|
# allows to use different .env file for each lightrag instance
|
|
# the OS environment variables take precedence over the .env file
|
|
load_dotenv(dotenv_path=".env", override=False)
|
|
|
|
# Setup logger
|
|
setup_logger("lightrag", level="INFO")
|
|
|
|
# Storage type configurations
|
|
STORAGE_TYPES = {
|
|
"1": "JsonKVStorage",
|
|
"2": "RedisKVStorage",
|
|
"3": "PGKVStorage",
|
|
"4": "MongoKVStorage",
|
|
}
|
|
|
|
# Workspace environment variable mapping
|
|
WORKSPACE_ENV_MAP = {
|
|
"PGKVStorage": "POSTGRES_WORKSPACE",
|
|
"MongoKVStorage": "MONGODB_WORKSPACE",
|
|
"RedisKVStorage": "REDIS_WORKSPACE",
|
|
}
|
|
|
|
# Default batch size for migration
|
|
DEFAULT_BATCH_SIZE = 1000
|
|
|
|
|
|
# Default count batch size for efficient counting
|
|
DEFAULT_COUNT_BATCH_SIZE = 1000
|
|
|
|
|
|
@dataclass
|
|
class MigrationStats:
|
|
"""Migration statistics and error tracking"""
|
|
|
|
total_source_records: int = 0
|
|
total_batches: int = 0
|
|
successful_batches: int = 0
|
|
failed_batches: int = 0
|
|
successful_records: int = 0
|
|
failed_records: int = 0
|
|
errors: List[Dict[str, Any]] = field(default_factory=list)
|
|
|
|
def add_error(self, batch_idx: int, error: Exception, batch_size: int):
|
|
"""Record batch error"""
|
|
self.errors.append(
|
|
{
|
|
"batch": batch_idx,
|
|
"error_type": type(error).__name__,
|
|
"error_msg": str(error),
|
|
"records_lost": batch_size,
|
|
"timestamp": time.time(),
|
|
}
|
|
)
|
|
self.failed_batches += 1
|
|
self.failed_records += batch_size
|
|
|
|
|
|
class MigrationTool:
|
|
"""LLM Cache Migration Tool"""
|
|
|
|
def __init__(self):
|
|
self.source_storage = None
|
|
self.target_storage = None
|
|
self.source_workspace = ""
|
|
self.target_workspace = ""
|
|
self.batch_size = DEFAULT_BATCH_SIZE
|
|
|
|
def get_workspace_for_storage(self, storage_name: str) -> str:
|
|
"""Get workspace for a specific storage type
|
|
|
|
Priority: Storage-specific env var > WORKSPACE env var > empty string
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Workspace name
|
|
"""
|
|
# Check storage-specific workspace
|
|
if storage_name in WORKSPACE_ENV_MAP:
|
|
specific_workspace = os.getenv(WORKSPACE_ENV_MAP[storage_name])
|
|
if specific_workspace:
|
|
return specific_workspace
|
|
|
|
# Check generic WORKSPACE
|
|
workspace = os.getenv("WORKSPACE", "")
|
|
return workspace
|
|
|
|
def check_env_vars(self, storage_name: str) -> bool:
|
|
"""Check if all required environment variables exist
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
True if all required env vars exist, False otherwise
|
|
"""
|
|
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
|
|
missing_vars = [var for var in required_vars if var not in os.environ]
|
|
|
|
if missing_vars:
|
|
print(
|
|
f"✗ Missing required environment variables: {', '.join(missing_vars)}"
|
|
)
|
|
return False
|
|
|
|
print("✓ All required environment variables are set")
|
|
return True
|
|
|
|
def get_storage_class(self, storage_name: str):
|
|
"""Dynamically import and return storage class
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Storage class
|
|
"""
|
|
if storage_name == "JsonKVStorage":
|
|
from lightrag.kg.json_kv_impl import JsonKVStorage
|
|
|
|
return JsonKVStorage
|
|
elif storage_name == "RedisKVStorage":
|
|
from lightrag.kg.redis_impl import RedisKVStorage
|
|
|
|
return RedisKVStorage
|
|
elif storage_name == "PGKVStorage":
|
|
from lightrag.kg.postgres_impl import PGKVStorage
|
|
|
|
return PGKVStorage
|
|
elif storage_name == "MongoKVStorage":
|
|
from lightrag.kg.mongo_impl import MongoKVStorage
|
|
|
|
return MongoKVStorage
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def initialize_storage(self, storage_name: str, workspace: str):
|
|
"""Initialize storage instance
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
workspace: Workspace name
|
|
|
|
Returns:
|
|
Initialized storage instance
|
|
"""
|
|
storage_class = self.get_storage_class(storage_name)
|
|
|
|
# Create global config
|
|
global_config = {
|
|
"working_dir": os.getenv("WORKING_DIR", "./rag_storage"),
|
|
"embedding_batch_num": 10,
|
|
}
|
|
|
|
# Initialize storage
|
|
storage = storage_class(
|
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
|
workspace=workspace,
|
|
global_config=global_config,
|
|
embedding_func=None,
|
|
)
|
|
|
|
# Initialize the storage
|
|
await storage.initialize()
|
|
|
|
return storage
|
|
|
|
async def get_default_caches_json(self, storage) -> Dict[str, Any]:
|
|
"""Get default caches from JsonKVStorage
|
|
|
|
Args:
|
|
storage: JsonKVStorage instance
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
# Access _data directly - it's a dict from shared_storage
|
|
async with storage._storage_lock:
|
|
filtered = {}
|
|
for key, value in storage._data.items():
|
|
if key.startswith("default:extract:") or key.startswith(
|
|
"default:summary:"
|
|
):
|
|
filtered[key] = value
|
|
return filtered
|
|
|
|
async def get_default_caches_redis(
|
|
self, storage, batch_size: int = 1000
|
|
) -> Dict[str, Any]:
|
|
"""Get default caches from RedisKVStorage with pagination
|
|
|
|
Args:
|
|
storage: RedisKVStorage instance
|
|
batch_size: Number of keys to process per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
import json
|
|
|
|
cache_data = {}
|
|
|
|
# Use _get_redis_connection() context manager
|
|
async with storage._get_redis_connection() as redis:
|
|
for pattern in ["default:extract:*", "default:summary:*"]:
|
|
# Add namespace prefix to pattern
|
|
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
|
|
cursor = 0
|
|
|
|
while True:
|
|
# SCAN already implements cursor-based pagination
|
|
cursor, keys = await redis.scan(
|
|
cursor, match=prefixed_pattern, count=batch_size
|
|
)
|
|
|
|
if keys:
|
|
# Process this batch using pipeline with error handling
|
|
try:
|
|
pipe = redis.pipeline()
|
|
for key in keys:
|
|
pipe.get(key)
|
|
values = await pipe.execute()
|
|
|
|
for key, value in zip(keys, values):
|
|
if value:
|
|
key_str = (
|
|
key.decode() if isinstance(key, bytes) else key
|
|
)
|
|
# Remove namespace prefix to get original key
|
|
original_key = key_str.replace(
|
|
f"{storage.final_namespace}:", "", 1
|
|
)
|
|
cache_data[original_key] = json.loads(value)
|
|
|
|
except Exception as e:
|
|
# Pipeline execution failed, fall back to individual gets
|
|
print(
|
|
f"⚠️ Pipeline execution failed for batch, using individual gets: {e}"
|
|
)
|
|
for key in keys:
|
|
try:
|
|
value = await redis.get(key)
|
|
if value:
|
|
key_str = (
|
|
key.decode()
|
|
if isinstance(key, bytes)
|
|
else key
|
|
)
|
|
original_key = key_str.replace(
|
|
f"{storage.final_namespace}:", "", 1
|
|
)
|
|
cache_data[original_key] = json.loads(value)
|
|
except Exception as individual_error:
|
|
print(
|
|
f"⚠️ Failed to get individual key {key}: {individual_error}"
|
|
)
|
|
continue
|
|
|
|
if cursor == 0:
|
|
break
|
|
|
|
# Yield control periodically to avoid blocking
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches_pg(
|
|
self, storage, batch_size: int = 1000
|
|
) -> Dict[str, Any]:
|
|
"""Get default caches from PGKVStorage with pagination
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
batch_size: Number of records to fetch per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
cache_data = {}
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
offset = 0
|
|
|
|
while True:
|
|
# Use LIMIT and OFFSET for pagination
|
|
query = f"""
|
|
SELECT id as key, original_prompt, return_value, chunk_id, cache_type, queryparam,
|
|
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
|
|
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
|
|
FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND (id LIKE 'default:extract:%' OR id LIKE 'default:summary:%')
|
|
ORDER BY id
|
|
LIMIT $2 OFFSET $3
|
|
"""
|
|
|
|
results = await storage.db.query(
|
|
query, [storage.workspace, batch_size, offset], multirows=True
|
|
)
|
|
|
|
if not results:
|
|
break
|
|
|
|
for row in results:
|
|
# Map PostgreSQL fields to cache format
|
|
cache_entry = {
|
|
"return": row.get("return_value", ""),
|
|
"cache_type": row.get("cache_type"),
|
|
"original_prompt": row.get("original_prompt", ""),
|
|
"chunk_id": row.get("chunk_id"),
|
|
"queryparam": row.get("queryparam"),
|
|
"create_time": row.get("create_time", 0),
|
|
"update_time": row.get("update_time", 0),
|
|
}
|
|
cache_data[row["key"]] = cache_entry
|
|
|
|
# If we got fewer results than batch_size, we're done
|
|
if len(results) < batch_size:
|
|
break
|
|
|
|
offset += batch_size
|
|
|
|
# Yield control periodically
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches_mongo(
|
|
self, storage, batch_size: int = 1000
|
|
) -> Dict[str, Any]:
|
|
"""Get default caches from MongoKVStorage with cursor-based pagination
|
|
|
|
Args:
|
|
storage: MongoKVStorage instance
|
|
batch_size: Number of documents to process per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
cache_data = {}
|
|
|
|
# MongoDB query with regex - use _data not collection
|
|
query = {"_id": {"$regex": "^default:(extract|summary):"}}
|
|
|
|
# Use cursor without to_list() - process in batches
|
|
cursor = storage._data.find(query).batch_size(batch_size)
|
|
|
|
async for doc in cursor:
|
|
# Process each document as it comes
|
|
doc_copy = doc.copy()
|
|
key = doc_copy.pop("_id")
|
|
|
|
# Filter ALL MongoDB/database-specific fields
|
|
# Following .clinerules: "Always filter deprecated/incompatible fields during deserialization"
|
|
for field_name in ["namespace", "workspace", "_id", "content"]:
|
|
doc_copy.pop(field_name, None)
|
|
|
|
cache_data[key] = doc_copy
|
|
|
|
# Periodically yield control (every batch_size documents)
|
|
if len(cache_data) % batch_size == 0:
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches(self, storage, storage_name: str) -> Dict[str, Any]:
|
|
"""Get default caches from any storage type
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
|
|
Returns:
|
|
Dictionary of cache entries
|
|
"""
|
|
if storage_name == "JsonKVStorage":
|
|
return await self.get_default_caches_json(storage)
|
|
elif storage_name == "RedisKVStorage":
|
|
return await self.get_default_caches_redis(storage)
|
|
elif storage_name == "PGKVStorage":
|
|
return await self.get_default_caches_pg(storage)
|
|
elif storage_name == "MongoKVStorage":
|
|
return await self.get_default_caches_mongo(storage)
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def count_default_caches_json(self, storage) -> int:
|
|
"""Count default caches in JsonKVStorage - O(N) but very fast in-memory
|
|
|
|
Args:
|
|
storage: JsonKVStorage instance
|
|
|
|
Returns:
|
|
Total count of cache records
|
|
"""
|
|
async with storage._storage_lock:
|
|
return sum(
|
|
1
|
|
for key in storage._data.keys()
|
|
if key.startswith("default:extract:")
|
|
or key.startswith("default:summary:")
|
|
)
|
|
|
|
async def count_default_caches_redis(self, storage) -> int:
|
|
"""Count default caches in RedisKVStorage using SCAN with progress display
|
|
|
|
Args:
|
|
storage: RedisKVStorage instance
|
|
|
|
Returns:
|
|
Total count of cache records
|
|
"""
|
|
count = 0
|
|
print("Scanning Redis keys...", end="", flush=True)
|
|
|
|
async with storage._get_redis_connection() as redis:
|
|
for pattern in ["default:extract:*", "default:summary:*"]:
|
|
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
|
|
cursor = 0
|
|
while True:
|
|
cursor, keys = await redis.scan(
|
|
cursor, match=prefixed_pattern, count=DEFAULT_COUNT_BATCH_SIZE
|
|
)
|
|
count += len(keys)
|
|
|
|
# Show progress
|
|
print(
|
|
f"\rScanning Redis keys... found {count:,} records",
|
|
end="",
|
|
flush=True,
|
|
)
|
|
|
|
if cursor == 0:
|
|
break
|
|
|
|
print() # New line after progress
|
|
return count
|
|
|
|
async def count_default_caches_pg(self, storage) -> int:
|
|
"""Count default caches in PostgreSQL using COUNT(*) with progress indicator
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
|
|
Returns:
|
|
Total count of cache records
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
|
|
query = f"""
|
|
SELECT COUNT(*) as count
|
|
FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND (id LIKE 'default:extract:%' OR id LIKE 'default:summary:%')
|
|
"""
|
|
|
|
print("Counting PostgreSQL records...", end="", flush=True)
|
|
start_time = time.time()
|
|
|
|
result = await storage.db.query(query, [storage.workspace])
|
|
|
|
elapsed = time.time() - start_time
|
|
if elapsed > 1:
|
|
print(f" (took {elapsed:.1f}s)", end="")
|
|
print() # New line
|
|
|
|
return result["count"] if result else 0
|
|
|
|
async def count_default_caches_mongo(self, storage) -> int:
|
|
"""Count default caches in MongoDB using count_documents with progress indicator
|
|
|
|
Args:
|
|
storage: MongoKVStorage instance
|
|
|
|
Returns:
|
|
Total count of cache records
|
|
"""
|
|
query = {"_id": {"$regex": "^default:(extract|summary):"}}
|
|
|
|
print("Counting MongoDB documents...", end="", flush=True)
|
|
start_time = time.time()
|
|
|
|
count = await storage._data.count_documents(query)
|
|
|
|
elapsed = time.time() - start_time
|
|
if elapsed > 1:
|
|
print(f" (took {elapsed:.1f}s)", end="")
|
|
print() # New line
|
|
|
|
return count
|
|
|
|
async def count_default_caches(self, storage, storage_name: str) -> int:
|
|
"""Count default caches from any storage type efficiently
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
|
|
Returns:
|
|
Total count of cache records
|
|
"""
|
|
if storage_name == "JsonKVStorage":
|
|
return await self.count_default_caches_json(storage)
|
|
elif storage_name == "RedisKVStorage":
|
|
return await self.count_default_caches_redis(storage)
|
|
elif storage_name == "PGKVStorage":
|
|
return await self.count_default_caches_pg(storage)
|
|
elif storage_name == "MongoKVStorage":
|
|
return await self.count_default_caches_mongo(storage)
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def stream_default_caches_json(self, storage, batch_size: int):
|
|
"""Stream default caches from JsonKVStorage - yields batches
|
|
|
|
Args:
|
|
storage: JsonKVStorage instance
|
|
batch_size: Size of each batch to yield
|
|
|
|
Yields:
|
|
Dictionary batches of cache entries
|
|
|
|
Note:
|
|
This method creates a snapshot of matching items while holding the lock,
|
|
then releases the lock before yielding batches. This prevents deadlock
|
|
when the target storage (also JsonKVStorage) tries to acquire the same
|
|
lock during upsert operations.
|
|
"""
|
|
# Create a snapshot of matching items while holding the lock
|
|
async with storage._storage_lock:
|
|
matching_items = [
|
|
(key, value)
|
|
for key, value in storage._data.items()
|
|
if key.startswith("default:extract:")
|
|
or key.startswith("default:summary:")
|
|
]
|
|
|
|
# Now iterate over snapshot without holding lock
|
|
batch = {}
|
|
for key, value in matching_items:
|
|
batch[key] = value
|
|
if len(batch) >= batch_size:
|
|
yield batch
|
|
batch = {}
|
|
|
|
# Yield remaining items
|
|
if batch:
|
|
yield batch
|
|
|
|
async def stream_default_caches_redis(self, storage, batch_size: int):
|
|
"""Stream default caches from RedisKVStorage - yields batches
|
|
|
|
Args:
|
|
storage: RedisKVStorage instance
|
|
batch_size: Size of each batch to yield
|
|
|
|
Yields:
|
|
Dictionary batches of cache entries
|
|
"""
|
|
import json
|
|
|
|
async with storage._get_redis_connection() as redis:
|
|
for pattern in ["default:extract:*", "default:summary:*"]:
|
|
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
|
|
cursor = 0
|
|
|
|
while True:
|
|
cursor, keys = await redis.scan(
|
|
cursor, match=prefixed_pattern, count=batch_size
|
|
)
|
|
|
|
if keys:
|
|
try:
|
|
pipe = redis.pipeline()
|
|
for key in keys:
|
|
pipe.get(key)
|
|
values = await pipe.execute()
|
|
|
|
batch = {}
|
|
for key, value in zip(keys, values):
|
|
if value:
|
|
key_str = (
|
|
key.decode() if isinstance(key, bytes) else key
|
|
)
|
|
original_key = key_str.replace(
|
|
f"{storage.final_namespace}:", "", 1
|
|
)
|
|
batch[original_key] = json.loads(value)
|
|
|
|
if batch:
|
|
yield batch
|
|
|
|
except Exception as e:
|
|
print(f"⚠️ Pipeline execution failed for batch: {e}")
|
|
# Fall back to individual gets
|
|
batch = {}
|
|
for key in keys:
|
|
try:
|
|
value = await redis.get(key)
|
|
if value:
|
|
key_str = (
|
|
key.decode()
|
|
if isinstance(key, bytes)
|
|
else key
|
|
)
|
|
original_key = key_str.replace(
|
|
f"{storage.final_namespace}:", "", 1
|
|
)
|
|
batch[original_key] = json.loads(value)
|
|
except Exception as individual_error:
|
|
print(
|
|
f"⚠️ Failed to get individual key {key}: {individual_error}"
|
|
)
|
|
continue
|
|
|
|
if batch:
|
|
yield batch
|
|
|
|
if cursor == 0:
|
|
break
|
|
|
|
await asyncio.sleep(0)
|
|
|
|
async def stream_default_caches_pg(self, storage, batch_size: int):
|
|
"""Stream default caches from PostgreSQL - yields batches
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
batch_size: Size of each batch to yield
|
|
|
|
Yields:
|
|
Dictionary batches of cache entries
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
offset = 0
|
|
|
|
while True:
|
|
query = f"""
|
|
SELECT id as key, original_prompt, return_value, chunk_id, cache_type, queryparam,
|
|
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
|
|
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
|
|
FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND (id LIKE 'default:extract:%' OR id LIKE 'default:summary:%')
|
|
ORDER BY id
|
|
LIMIT $2 OFFSET $3
|
|
"""
|
|
|
|
results = await storage.db.query(
|
|
query, [storage.workspace, batch_size, offset], multirows=True
|
|
)
|
|
|
|
if not results:
|
|
break
|
|
|
|
batch = {}
|
|
for row in results:
|
|
cache_entry = {
|
|
"return": row.get("return_value", ""),
|
|
"cache_type": row.get("cache_type"),
|
|
"original_prompt": row.get("original_prompt", ""),
|
|
"chunk_id": row.get("chunk_id"),
|
|
"queryparam": row.get("queryparam"),
|
|
"create_time": row.get("create_time", 0),
|
|
"update_time": row.get("update_time", 0),
|
|
}
|
|
batch[row["key"]] = cache_entry
|
|
|
|
if batch:
|
|
yield batch
|
|
|
|
if len(results) < batch_size:
|
|
break
|
|
|
|
offset += batch_size
|
|
await asyncio.sleep(0)
|
|
|
|
async def stream_default_caches_mongo(self, storage, batch_size: int):
|
|
"""Stream default caches from MongoDB - yields batches
|
|
|
|
Args:
|
|
storage: MongoKVStorage instance
|
|
batch_size: Size of each batch to yield
|
|
|
|
Yields:
|
|
Dictionary batches of cache entries
|
|
"""
|
|
query = {"_id": {"$regex": "^default:(extract|summary):"}}
|
|
cursor = storage._data.find(query).batch_size(batch_size)
|
|
|
|
batch = {}
|
|
async for doc in cursor:
|
|
doc_copy = doc.copy()
|
|
key = doc_copy.pop("_id")
|
|
|
|
# Filter MongoDB/database-specific fields
|
|
for field_name in ["namespace", "workspace", "_id", "content"]:
|
|
doc_copy.pop(field_name, None)
|
|
|
|
batch[key] = doc_copy
|
|
|
|
if len(batch) >= batch_size:
|
|
yield batch
|
|
batch = {}
|
|
|
|
# Yield remaining items
|
|
if batch:
|
|
yield batch
|
|
|
|
async def stream_default_caches(
|
|
self, storage, storage_name: str, batch_size: int = None
|
|
):
|
|
"""Stream default caches from any storage type - unified interface
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
batch_size: Size of each batch to yield (defaults to self.batch_size)
|
|
|
|
Yields:
|
|
Dictionary batches of cache entries
|
|
"""
|
|
if batch_size is None:
|
|
batch_size = self.batch_size
|
|
|
|
if storage_name == "JsonKVStorage":
|
|
async for batch in self.stream_default_caches_json(storage, batch_size):
|
|
yield batch
|
|
elif storage_name == "RedisKVStorage":
|
|
async for batch in self.stream_default_caches_redis(storage, batch_size):
|
|
yield batch
|
|
elif storage_name == "PGKVStorage":
|
|
async for batch in self.stream_default_caches_pg(storage, batch_size):
|
|
yield batch
|
|
elif storage_name == "MongoKVStorage":
|
|
async for batch in self.stream_default_caches_mongo(storage, batch_size):
|
|
yield batch
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def count_cache_types(self, cache_data: Dict[str, Any]) -> Dict[str, int]:
|
|
"""Count cache entries by type
|
|
|
|
Args:
|
|
cache_data: Dictionary of cache entries
|
|
|
|
Returns:
|
|
Dictionary with counts for each cache type
|
|
"""
|
|
counts = {
|
|
"extract": 0,
|
|
"summary": 0,
|
|
}
|
|
|
|
for key in cache_data.keys():
|
|
if key.startswith("default:extract:"):
|
|
counts["extract"] += 1
|
|
elif key.startswith("default:summary:"):
|
|
counts["summary"] += 1
|
|
|
|
return counts
|
|
|
|
def print_header(self):
|
|
"""Print tool header"""
|
|
print("\n" + "=" * 50)
|
|
print("LLM Cache Migration Tool - LightRAG")
|
|
print("=" * 50)
|
|
|
|
def print_storage_types(self):
|
|
"""Print available storage types"""
|
|
print("\nSupported KV Storage Types:")
|
|
for key, value in STORAGE_TYPES.items():
|
|
print(f"[{key}] {value}")
|
|
|
|
def get_user_choice(
|
|
self, prompt: str, valid_choices: list, allow_exit: bool = False
|
|
) -> str:
|
|
"""Get user choice with validation
|
|
|
|
Args:
|
|
prompt: Prompt message
|
|
valid_choices: List of valid choices
|
|
allow_exit: If True, allow user to press Enter or input '0' to exit
|
|
|
|
Returns:
|
|
User's choice, or None if user chose to exit
|
|
"""
|
|
exit_hint = " (Press Enter or 0 to exit)" if allow_exit else ""
|
|
while True:
|
|
choice = input(f"\n{prompt}{exit_hint}: ").strip()
|
|
|
|
# Check for exit
|
|
if allow_exit and (choice == "" or choice == "0"):
|
|
return None
|
|
|
|
if choice in valid_choices:
|
|
return choice
|
|
print(f"✗ Invalid choice, please enter one of: {', '.join(valid_choices)}")
|
|
|
|
async def setup_storage(
|
|
self,
|
|
storage_type: str,
|
|
use_streaming: bool = False,
|
|
exclude_storage_name: str = None,
|
|
) -> tuple:
|
|
"""Setup and initialize storage
|
|
|
|
Args:
|
|
storage_type: Type label (source/target)
|
|
use_streaming: If True, only count records without loading. If False, load all data (legacy mode)
|
|
exclude_storage_name: Storage type to exclude from selection (e.g., to prevent selecting same as source)
|
|
|
|
Returns:
|
|
Tuple of (storage_instance, storage_name, workspace, total_count)
|
|
Returns (None, None, None, 0) if user chooses to exit
|
|
"""
|
|
print(f"\n=== {storage_type} Storage Setup ===")
|
|
|
|
# Filter available storage types if exclusion is specified
|
|
available_types = STORAGE_TYPES.copy()
|
|
if exclude_storage_name:
|
|
# Remove the excluded storage type from available options
|
|
available_types = {
|
|
k: v for k, v in STORAGE_TYPES.items() if v != exclude_storage_name
|
|
}
|
|
|
|
# Print available types
|
|
print("\nAvailable Storage Types for Target:")
|
|
for key, value in available_types.items():
|
|
print(f"[{key}] {value}")
|
|
else:
|
|
# Print all storage types for source
|
|
self.print_storage_types()
|
|
|
|
# Get storage type choice - allow exit for source storage
|
|
allow_exit = storage_type == "Source"
|
|
choice = self.get_user_choice(
|
|
f"Select {storage_type} storage type (1-4)",
|
|
list(available_types.keys()),
|
|
allow_exit=allow_exit,
|
|
)
|
|
|
|
# Handle exit
|
|
if choice is None:
|
|
print("\n✓ Migration cancelled by user")
|
|
return None, None, None, 0
|
|
|
|
storage_name = STORAGE_TYPES[choice]
|
|
|
|
# Check environment variables
|
|
print("\nChecking environment variables...")
|
|
if not self.check_env_vars(storage_name):
|
|
return None, None, None, 0
|
|
|
|
# Get workspace
|
|
workspace = self.get_workspace_for_storage(storage_name)
|
|
|
|
# Initialize storage
|
|
print(f"\nInitializing {storage_type} storage...")
|
|
try:
|
|
storage = await self.initialize_storage(storage_name, workspace)
|
|
print(f"- Storage Type: {storage_name}")
|
|
print(f"- Workspace: {workspace if workspace else '(default)'}")
|
|
print("- Connection Status: ✓ Success")
|
|
except Exception as e:
|
|
print(f"✗ Initialization failed: {e}")
|
|
return None, None, None, 0
|
|
|
|
# Count cache records efficiently
|
|
print(f"\n{'Counting' if use_streaming else 'Loading'} cache records...")
|
|
try:
|
|
if use_streaming:
|
|
# Use efficient counting without loading data
|
|
total_count = await self.count_default_caches(storage, storage_name)
|
|
print(f"- Total: {total_count:,} records")
|
|
else:
|
|
# Legacy mode: load all data
|
|
cache_data = await self.get_default_caches(storage, storage_name)
|
|
counts = await self.count_cache_types(cache_data)
|
|
total_count = len(cache_data)
|
|
|
|
print(f"- default:extract: {counts['extract']:,} records")
|
|
print(f"- default:summary: {counts['summary']:,} records")
|
|
print(f"- Total: {total_count:,} records")
|
|
except Exception as e:
|
|
print(f"✗ {'Counting' if use_streaming else 'Loading'} failed: {e}")
|
|
return None, None, None, 0
|
|
|
|
return storage, storage_name, workspace, total_count
|
|
|
|
async def migrate_caches(
|
|
self, source_data: Dict[str, Any], target_storage, target_storage_name: str
|
|
) -> MigrationStats:
|
|
"""Migrate caches in batches with error tracking (Legacy mode - loads all data)
|
|
|
|
Args:
|
|
source_data: Source cache data
|
|
target_storage: Target storage instance
|
|
target_storage_name: Target storage type name
|
|
|
|
Returns:
|
|
MigrationStats object with migration results and errors
|
|
"""
|
|
stats = MigrationStats()
|
|
stats.total_source_records = len(source_data)
|
|
|
|
if stats.total_source_records == 0:
|
|
print("\nNo records to migrate")
|
|
return stats
|
|
|
|
# Convert to list for batching
|
|
items = list(source_data.items())
|
|
stats.total_batches = (
|
|
stats.total_source_records + self.batch_size - 1
|
|
) // self.batch_size
|
|
|
|
print("\n=== Starting Migration ===")
|
|
|
|
for batch_idx in range(stats.total_batches):
|
|
start_idx = batch_idx * self.batch_size
|
|
end_idx = min((batch_idx + 1) * self.batch_size, stats.total_source_records)
|
|
batch_items = items[start_idx:end_idx]
|
|
batch_data = dict(batch_items)
|
|
|
|
# Determine current cache type for display
|
|
current_key = batch_items[0][0]
|
|
cache_type = "extract" if "extract" in current_key else "summary"
|
|
|
|
try:
|
|
# Attempt to write batch
|
|
await target_storage.upsert(batch_data)
|
|
|
|
# Success - update stats
|
|
stats.successful_batches += 1
|
|
stats.successful_records += len(batch_data)
|
|
|
|
# Calculate progress
|
|
progress = (end_idx / stats.total_source_records) * 100
|
|
bar_length = 20
|
|
filled_length = int(bar_length * end_idx // stats.total_source_records)
|
|
bar = "█" * filled_length + "░" * (bar_length - filled_length)
|
|
|
|
print(
|
|
f"Batch {batch_idx + 1}/{stats.total_batches}: {bar} "
|
|
f"{end_idx:,}/{stats.total_source_records:,} ({progress:.0f}%) - "
|
|
f"default:{cache_type} ✓"
|
|
)
|
|
|
|
except Exception as e:
|
|
# Error - record and continue
|
|
stats.add_error(batch_idx + 1, e, len(batch_data))
|
|
|
|
print(
|
|
f"Batch {batch_idx + 1}/{stats.total_batches}: ✗ FAILED - "
|
|
f"{type(e).__name__}: {str(e)}"
|
|
)
|
|
|
|
# Final persist
|
|
print("\nPersisting data to disk...")
|
|
try:
|
|
await target_storage.index_done_callback()
|
|
print("✓ Data persisted successfully")
|
|
except Exception as e:
|
|
print(f"✗ Persist failed: {e}")
|
|
stats.add_error(0, e, 0) # batch 0 = persist error
|
|
|
|
return stats
|
|
|
|
async def migrate_caches_streaming(
|
|
self,
|
|
source_storage,
|
|
source_storage_name: str,
|
|
target_storage,
|
|
target_storage_name: str,
|
|
total_records: int,
|
|
) -> MigrationStats:
|
|
"""Migrate caches using streaming approach - minimal memory footprint
|
|
|
|
Args:
|
|
source_storage: Source storage instance
|
|
source_storage_name: Source storage type name
|
|
target_storage: Target storage instance
|
|
target_storage_name: Target storage type name
|
|
total_records: Total number of records to migrate
|
|
|
|
Returns:
|
|
MigrationStats object with migration results and errors
|
|
"""
|
|
stats = MigrationStats()
|
|
stats.total_source_records = total_records
|
|
|
|
if stats.total_source_records == 0:
|
|
print("\nNo records to migrate")
|
|
return stats
|
|
|
|
# Calculate total batches
|
|
stats.total_batches = (total_records + self.batch_size - 1) // self.batch_size
|
|
|
|
print("\n=== Starting Streaming Migration ===")
|
|
print(
|
|
f"💡 Memory-optimized mode: Processing {self.batch_size:,} records at a time\n"
|
|
)
|
|
|
|
batch_idx = 0
|
|
|
|
# Stream batches from source and write to target immediately
|
|
async for batch in self.stream_default_caches(
|
|
source_storage, source_storage_name
|
|
):
|
|
batch_idx += 1
|
|
|
|
# Determine current cache type for display
|
|
if batch:
|
|
first_key = next(iter(batch.keys()))
|
|
cache_type = "extract" if "extract" in first_key else "summary"
|
|
else:
|
|
cache_type = "unknown"
|
|
|
|
try:
|
|
# Write batch to target storage
|
|
await target_storage.upsert(batch)
|
|
|
|
# Success - update stats
|
|
stats.successful_batches += 1
|
|
stats.successful_records += len(batch)
|
|
|
|
# Calculate progress with known total
|
|
progress = (stats.successful_records / total_records) * 100
|
|
bar_length = 20
|
|
filled_length = int(
|
|
bar_length * stats.successful_records // total_records
|
|
)
|
|
bar = "█" * filled_length + "░" * (bar_length - filled_length)
|
|
|
|
print(
|
|
f"Batch {batch_idx}/{stats.total_batches}: {bar} "
|
|
f"{stats.successful_records:,}/{total_records:,} ({progress:.1f}%) - "
|
|
f"default:{cache_type} ✓"
|
|
)
|
|
|
|
except Exception as e:
|
|
# Error - record and continue
|
|
stats.add_error(batch_idx, e, len(batch))
|
|
|
|
print(
|
|
f"Batch {batch_idx}/{stats.total_batches}: ✗ FAILED - "
|
|
f"{type(e).__name__}: {str(e)}"
|
|
)
|
|
|
|
# Final persist
|
|
print("\nPersisting data to disk...")
|
|
try:
|
|
await target_storage.index_done_callback()
|
|
print("✓ Data persisted successfully")
|
|
except Exception as e:
|
|
print(f"✗ Persist failed: {e}")
|
|
stats.add_error(0, e, 0) # batch 0 = persist error
|
|
|
|
return stats
|
|
|
|
def print_migration_report(self, stats: MigrationStats):
|
|
"""Print comprehensive migration report
|
|
|
|
Args:
|
|
stats: MigrationStats object with migration results
|
|
"""
|
|
print("\n" + "=" * 60)
|
|
print("Migration Complete - Final Report")
|
|
print("=" * 60)
|
|
|
|
# Overall statistics
|
|
print("\n📊 Statistics:")
|
|
print(f" Total source records: {stats.total_source_records:,}")
|
|
print(f" Total batches: {stats.total_batches:,}")
|
|
print(f" Successful batches: {stats.successful_batches:,}")
|
|
print(f" Failed batches: {stats.failed_batches:,}")
|
|
print(f" Successfully migrated: {stats.successful_records:,}")
|
|
print(f" Failed to migrate: {stats.failed_records:,}")
|
|
|
|
# Success rate
|
|
success_rate = (
|
|
(stats.successful_records / stats.total_source_records * 100)
|
|
if stats.total_source_records > 0
|
|
else 0
|
|
)
|
|
print(f" Success rate: {success_rate:.2f}%")
|
|
|
|
# Error details
|
|
if stats.errors:
|
|
print(f"\n⚠️ Errors encountered: {len(stats.errors)}")
|
|
print("\nError Details:")
|
|
print("-" * 60)
|
|
|
|
# Group errors by type
|
|
error_types = {}
|
|
for error in stats.errors:
|
|
err_type = error["error_type"]
|
|
error_types[err_type] = error_types.get(err_type, 0) + 1
|
|
|
|
print("\nError Summary:")
|
|
for err_type, count in sorted(error_types.items(), key=lambda x: -x[1]):
|
|
print(f" - {err_type}: {count} occurrence(s)")
|
|
|
|
print("\nFirst 5 errors:")
|
|
for i, error in enumerate(stats.errors[:5], 1):
|
|
print(f"\n {i}. Batch {error['batch']}")
|
|
print(f" Type: {error['error_type']}")
|
|
print(f" Message: {error['error_msg']}")
|
|
print(f" Records lost: {error['records_lost']:,}")
|
|
|
|
if len(stats.errors) > 5:
|
|
print(f"\n ... and {len(stats.errors) - 5} more errors")
|
|
|
|
print("\n" + "=" * 60)
|
|
print("⚠️ WARNING: Migration completed with errors!")
|
|
print(" Please review the error details above.")
|
|
print("=" * 60)
|
|
else:
|
|
print("\n" + "=" * 60)
|
|
print("✓ SUCCESS: All records migrated successfully!")
|
|
print("=" * 60)
|
|
|
|
async def run(self):
|
|
"""Run the migration tool with streaming approach"""
|
|
try:
|
|
# Initialize shared storage (REQUIRED for storage classes to work)
|
|
from lightrag.kg.shared_storage import initialize_share_data
|
|
|
|
initialize_share_data(workers=1)
|
|
|
|
# Print header
|
|
self.print_header()
|
|
self.print_storage_types()
|
|
|
|
# Setup source storage with streaming (only count, don't load all data)
|
|
(
|
|
self.source_storage,
|
|
source_storage_name,
|
|
self.source_workspace,
|
|
source_count,
|
|
) = await self.setup_storage("Source", use_streaming=True)
|
|
|
|
# Check if user cancelled (setup_storage returns None for all fields)
|
|
if self.source_storage is None:
|
|
return
|
|
|
|
if source_count == 0:
|
|
print("\n⚠ Source storage has no cache records to migrate")
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
return
|
|
|
|
# Setup target storage with streaming (only count, don't load all data)
|
|
# Exclude source storage type from target selection
|
|
(
|
|
self.target_storage,
|
|
target_storage_name,
|
|
self.target_workspace,
|
|
target_count,
|
|
) = await self.setup_storage(
|
|
"Target", use_streaming=True, exclude_storage_name=source_storage_name
|
|
)
|
|
|
|
if not self.target_storage:
|
|
print("\n✗ Target storage setup failed")
|
|
# Cleanup source
|
|
await self.source_storage.finalize()
|
|
return
|
|
|
|
# Show migration summary
|
|
print("\n" + "=" * 50)
|
|
print("Migration Confirmation")
|
|
print("=" * 50)
|
|
print(
|
|
f"Source: {source_storage_name} (workspace: {self.source_workspace if self.source_workspace else '(default)'}) - {source_count:,} records"
|
|
)
|
|
print(
|
|
f"Target: {target_storage_name} (workspace: {self.target_workspace if self.target_workspace else '(default)'}) - {target_count:,} records"
|
|
)
|
|
print(f"Batch Size: {self.batch_size:,} records/batch")
|
|
print("Memory Mode: Streaming (memory-optimized)")
|
|
|
|
if target_count > 0:
|
|
print(
|
|
f"\n⚠️ Warning: Target storage already has {target_count:,} records"
|
|
)
|
|
print("Migration will overwrite records with the same keys")
|
|
|
|
# Confirm migration
|
|
confirm = input("\nContinue? (y/n): ").strip().lower()
|
|
if confirm != "y":
|
|
print("\n✗ Migration cancelled")
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
await self.target_storage.finalize()
|
|
return
|
|
|
|
# Perform streaming migration with error tracking
|
|
stats = await self.migrate_caches_streaming(
|
|
self.source_storage,
|
|
source_storage_name,
|
|
self.target_storage,
|
|
target_storage_name,
|
|
source_count,
|
|
)
|
|
|
|
# Print comprehensive migration report
|
|
self.print_migration_report(stats)
|
|
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
await self.target_storage.finalize()
|
|
|
|
except KeyboardInterrupt:
|
|
print("\n\n✗ Migration interrupted by user")
|
|
except Exception as e:
|
|
print(f"\n✗ Migration failed: {e}")
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
finally:
|
|
# Ensure cleanup
|
|
if self.source_storage:
|
|
try:
|
|
await self.source_storage.finalize()
|
|
except Exception:
|
|
pass
|
|
if self.target_storage:
|
|
try:
|
|
await self.target_storage.finalize()
|
|
except Exception:
|
|
pass
|
|
|
|
# Finalize shared storage
|
|
try:
|
|
from lightrag.kg.shared_storage import finalize_share_data
|
|
|
|
finalize_share_data()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
async def main():
|
|
"""Main entry point"""
|
|
tool = MigrationTool()
|
|
await tool.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|